
CHAPTER 1

Exploratory Data Analysis

This chapter focuses on the first step in any data science project: exploring the data.

Classical statistics focused almost exclusively on inference, a sometimes complex set
of procedures for drawing conclusions about large populations based on small sam‐
ples. In 1962, John W. Tukey (Figure 1-1) called for a reformation of statistics in his
seminal paper “The Future of Data Analysis” [Tukey-1962]. He proposed a new scien‐
tific discipline called data analysis that included statistical inference as just one com‐
ponent. Tukey forged links to the engineering and computer science communities (he
coined the terms bit, short for binary digit, and so!ware), and his original tenets are
surprisingly durable and form part of the foundation for data science. The field of
exploratory data analysis was established with Tukey’s 1977 now-classic book Explor‐
atory Data Analysis [Tukey-1977]. Tukey presented simple plots (e.g., boxplots, scat‐
terplots) that, along with summary statistics (mean, median, quantiles, etc.), help
paint a picture of a data set.

With the ready availability of computing power and expressive data analysis software,
exploratory data analysis has evolved well beyond its original scope. Key drivers of
this discipline have been the rapid development of new technology, access to more
and bigger data, and the greater use of quantitative analysis in a variety of disciplines.
David Donoho, professor of statistics at Stanford University and former undergradu‐
ate student of Tukey’s, authored an excellent article based on his presentation at the
Tukey Centennial workshop in Princeton, New Jersey [Donoho-2015]. Donoho traces
the genesis of data science back to Tukey’s pioneering work in data analysis.

1

https://oreil.ly/LQw6q

Figure 1-1. John Tukey, the eminent statistician whose ideas developed over 50 years ago
form the foundation of data science

Elements of Structured Data
Data comes from many sources: sensor measurements, events, text, images, and vid‐
eos. The Internet of "ings (IoT) is spewing out streams of information. Much of this
data is unstructured: images are a collection of pixels, with each pixel containing RGB
(red, green, blue) color information. Texts are sequences of words and nonword char‐
acters, often organized by sections, subsections, and so on. Clickstreams are sequen‐
ces of actions by a user interacting with an app or a web page. In fact, a major
challenge of data science is to harness this torrent of raw data into actionable infor‐
mation. To apply the statistical concepts covered in this book, unstructured raw data
must be processed and manipulated into a structured form. One of the commonest
forms of structured data is a table with rows and columns—as data might emerge
from a relational database or be collected for a study.

There are two basic types of structured data: numeric and categorical. Numeric data
comes in two forms: continuous, such as wind speed or time duration, and discrete,
such as the count of the occurrence of an event. Categorical data takes only a fixed set
of values, such as a type of TV screen (plasma, LCD, LED, etc.) or a state name (Ala‐
bama, Alaska, etc.). Binary data is an important special case of categorical data that
takes on only one of two values, such as 0/1, yes/no, or true/false. Another useful type
of categorical data is ordinal data in which the categories are ordered; an example of
this is a numerical rating (1, 2, 3, 4, or 5).

Why do we bother with a taxonomy of data types? It turns out that for the purposes
of data analysis and predictive modeling, the data type is important to help determine
the type of visual display, data analysis, or statistical model. In fact, data science
software, such as R and Python, uses these data types to improve computational per‐
formance. More important, the data type for a variable determines how software will
handle computations for that variable.

2 | Chapter 1: Exploratory Data Analysis

Key Terms for Data Types
Numeric

Data that are expressed on a numeric scale.

Continuous
Data that can take on any value in an interval. (Synonyms: interval, float,
numeric)

Discrete
Data that can take on only integer values, such as counts. (Synonyms: integer,
count)

Categorical
Data that can take on only a specific set of values representing a set of possible
categories. (Synonyms: enums, enumerated, factors, nominal)

Binary
A special case of categorical data with just two categories of values, e.g., 0/1,
true/false. (Synonyms: dichotomous, logical, indicator, boolean)

Ordinal
Categorical data that has an explicit ordering. (Synonym: ordered factor)

Software engineers and database programmers may wonder why we even need the
notion of categorical and ordinal data for analytics. After all, categories are merely a
collection of text (or numeric) values, and the underlying database automatically han‐
dles the internal representation. However, explicit identification of data as categorical,
as distinct from text, does offer some advantages:

• Knowing that data is categorical can act as a signal telling software how statistical
procedures, such as producing a chart or fitting a model, should behave. In par‐
ticular, ordinal data can be represented as an ordered.factor in R, preserving a
user-specified ordering in charts, tables, and models. In Python, scikit-learn
supports ordinal data with the sklearn.preprocessing.OrdinalEncoder.

• Storage and indexing can be optimized (as in a relational database).
• The possible values a given categorical variable can take are enforced in the soft‐

ware (like an enum).

The third “benefit” can lead to unintended or unexpected behavior: the default
behavior of data import functions in R (e.g., read.csv) is to automatically convert a
text column into a factor. Subsequent operations on that column will assume that
the only allowable values for that column are the ones originally imported, and
assigning a new text value will introduce a warning and produce an NA (missing

Elements of Structured Data | 3

value). The pandas package in Python will not make such a conversion automatically.
However, you can specify a column as categorical explicitly in the read_csv function.

Key Ideas
• Data is typically classified in software by type.
• Data types include numeric (continuous, discrete) and categorical (binary,

ordinal).
• Data typing in software acts as a signal to the software on how to process the

data.

Further Reading
• The pandas documentation describes the different data types and how they can

be manipulated in Python.
• Data types can be confusing, since types may overlap, and the taxonomy in one

software may differ from that in another. The R Tutorial website covers the
taxonomy for R. The pandas documentation describes the different data types
and how they can be manipulated in Python.

• Databases are more detailed in their classification of data types, incorporating
considerations of precision levels, fixed- or variable-length fields, and more; see
the W3Schools guide to SQL.

Rectangular Data
The typical frame of reference for an analysis in data science is a rectangular data
object, like a spreadsheet or database table.

Rectangular data is the general term for a two-dimensional matrix with rows indicat‐
ing records (cases) and columns indicating features (variables); data frame is the spe‐
cific format in R and Python. The data doesn’t always start in this form: unstructured
data (e.g., text) must be processed and manipulated so that it can be represented as a
set of features in the rectangular data (see “Elements of Structured Data” on page 2).
Data in relational databases must be extracted and put into a single table for most
data analysis and modeling tasks.

4 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/UGX-4
https://oreil.ly/2YUoA
https://oreil.ly/UGX-4
https://oreil.ly/cThTM

Key Terms for Rectangular Data
Data frame

Rectangular data (like a spreadsheet) is the basic data structure for statistical and
machine learning models.

Feature
A column within a table is commonly referred to as a feature.

Synonyms
attribute, input, predictor, variable

Outcome
Many data science projects involve predicting an outcome—often a yes/no out‐
come (in Table 1-1, it is “auction was competitive or not”). The features are some‐
times used to predict the outcome in an experiment or a study.

Synonyms
dependent variable, response, target, output

Records
A row within a table is commonly referred to as a record.

Synonyms
case, example, instance, observation, pattern, sample

Table 1-1. A typical data frame format
Category currency sellerRating Duration endDay ClosePrice OpenPrice Competitive?
Music/Movie/Game US 3249 5 Mon 0.01 0.01 0
Music/Movie/Game US 3249 5 Mon 0.01 0.01 0
Automotive US 3115 7 Tue 0.01 0.01 0
Automotive US 3115 7 Tue 0.01 0.01 0
Automotive US 3115 7 Tue 0.01 0.01 0
Automotive US 3115 7 Tue 0.01 0.01 0
Automotive US 3115 7 Tue 0.01 0.01 1
Automotive US 3115 7 Tue 0.01 0.01 1

In Table 1-1, there is a mix of measured or counted data (e.g., duration and price) and
categorical data (e.g., category and currency). As mentioned earlier, a special form of
categorical variable is a binary (yes/no or 0/1) variable, seen in the rightmost column
in Table 1-1—an indicator variable showing whether an auction was competitive (had
multiple bidders) or not. This indicator variable also happens to be an outcome vari‐
able, when the scenario is to predict whether an auction is competitive or not.

Rectangular Data | 5

Data Frames and Indexes
Traditional database tables have one or more columns designated as an index, essen‐
tially a row number. This can vastly improve the efficiency of certain database quer‐
ies. In Python, with the pandas library, the basic rectangular data structure is a
DataFrame object. By default, an automatic integer index is created for a DataFrame
based on the order of the rows. In pandas, it is also possible to set multilevel/hier‐
archical indexes to improve the efficiency of certain operations.

In R, the basic rectangular data structure is a data.frame object. A data.frame also
has an implicit integer index based on the row order. The native R data.frame does
not support user-specified or multilevel indexes, though a custom key can be created
through the row.names attribute. To overcome this deficiency, two new packages are
gaining widespread use: data.table and dplyr. Both support multilevel indexes and
offer significant speedups in working with a data.frame.

Terminology Di!erences

Terminology for rectangular data can be confusing. Statisticians
and data scientists use different terms for the same thing. For a sta‐
tistician, predictor variables are used in a model to predict a
response or dependent variable. For a data scientist, features are used
to predict a target. One synonym is particularly confusing: com‐
puter scientists will use the term sample for a single row; a sample
to a statistician means a collection of rows.

Nonrectangular Data Structures
There are other data structures besides rectangular data.

Time series data records successive measurements of the same variable. It is the raw
material for statistical forecasting methods, and it is also a key component of the data
produced by devices—the Internet of Things.

Spatial data structures, which are used in mapping and location analytics, are more
complex and varied than rectangular data structures. In the object representation, the
focus of the data is an object (e.g., a house) and its spatial coordinates. The #eld view,
by contrast, focuses on small units of space and the value of a relevant metric (pixel
brightness, for example).

6 | Chapter 1: Exploratory Data Analysis

Graph (or network) data structures are used to represent physical, social, and abstract
relationships. For example, a graph of a social network, such as Facebook or
LinkedIn, may represent connections between people on the network. Distribution
hubs connected by roads are an example of a physical network. Graph structures are
useful for certain types of problems, such as network optimization and recommender
systems.

Each of these data types has its specialized methodology in data science. The focus of
this book is on rectangular data, the fundamental building block of predictive
modeling.

Graphs in Statistics

In computer science and information technology, the term graph
typically refers to a depiction of the connections among entities,
and to the underlying data structure. In statistics, graph is used to
refer to a variety of plots and visualizations, not just of connections
among entities, and the term applies only to the visualization, not
to the data structure.

Key Ideas
• The basic data structure in data science is a rectangular matrix in which rows are

records and columns are variables (features).
• Terminology can be confusing; there are a variety of synonyms arising from the

different disciplines that contribute to data science (statistics, computer science,
and information technology).

Further Reading
• Documentation on data frames in R
• Documentation on data frames in Python

Estimates of Location
Variables with measured or count data might have thousands of distinct values. A
basic step in exploring your data is getting a “typical value” for each feature (variable):
an estimate of where most of the data is located (i.e., its central tendency).

Estimates of Location | 7

https://oreil.ly/NsONR
https://oreil.ly/oxDKQ

Key Terms for Estimates of Location
Mean

The sum of all values divided by the number of values.

Synonym
average

Weighted mean
The sum of all values times a weight divided by the sum of the weights.

Synonym
weighted average

Median
The value such that one-half of the data lies above and below.

Synonym
50th percentile

Percentile
The value such that P percent of the data lies below.

Synonym
quantile

Weighted median
The value such that one-half of the sum of the weights lies above and below the
sorted data.

Trimmed mean
The average of all values after dropping a fixed number of extreme values.

Synonym
truncated mean

Robust
Not sensitive to extreme values.

Synonym
resistant

Outlier
A data value that is very different from most of the data.

Synonym
extreme value

8 | Chapter 1: Exploratory Data Analysis

At first glance, summarizing data might seem fairly trivial: just take the mean of the
data. In fact, while the mean is easy to compute and expedient to use, it may not
always be the best measure for a central value. For this reason, statisticians have
developed and promoted several alternative estimates to the mean.

Metrics and Estimates

Statisticians often use the term estimate for a value calculated from
the data at hand, to draw a distinction between what we see from
the data and the theoretical true or exact state of affairs. Data scien‐
tists and business analysts are more likely to refer to such a value as
a metric. The difference reflects the approach of statistics versus
that of data science: accounting for uncertainty lies at the heart of
the discipline of statistics, whereas concrete business or organiza‐
tional objectives are the focus of data science. Hence, statisticians
estimate, and data scientists measure.

Mean
The most basic estimate of location is the mean, or average value. The mean is the
sum of all values divided by the number of values. Consider the following set of num‐
bers: {3 5 1 2}. The mean is (3 + 5 + 1 + 2) / 4 = 11 / 4 = 2.75. You will encounter the
symbol x (pronounced “x-bar”) being used to represent the mean of a sample from a
population. The formula to compute the mean for a set of n values x1, x2, ..., xn is:

Mean = x =
∑i=1

n xi
n

N (or n) refers to the total number of records or observations. In
statistics it is capitalized if it is referring to a population, and lower‐
case if it refers to a sample from a population. In data science, that
distinction is not vital, so you may see it both ways.

A variation of the mean is a trimmed mean, which you calculate by dropping a fixed
number of sorted values at each end and then taking an average of the remaining val‐
ues. Representing the sorted values by x 1 , x 2 , ..., x n where x 1 is the smallest value
and x n the largest, the formula to compute the trimmed mean with p smallest and
largest values omitted is:

Trimmed mean = x =
∑i = p + 1

n − p x i
n − 2p

Estimates of Location | 9

A trimmed mean eliminates the influence of extreme values. For example, in interna‐
tional diving the top score and bottom score from five judges are dropped, and the
final score is the average of the scores from the three remaining judges. This makes it
difficult for a single judge to manipulate the score, perhaps to favor their country’s
contestant. Trimmed means are widely used, and in many cases are preferable to
using the ordinary mean—see “Median and Robust Estimates” on page 10 for further
discussion.

Another type of mean is a weighted mean, which you calculate by multiplying each
data value xi by a user-specified weight wi and dividing their sum by the sum of the
weights. The formula for a weighted mean is:

Weighted mean = xw =
∑i = 1

n wixi
∑i = 1

n wi

There are two main motivations for using a weighted mean:

• Some values are intrinsically more variable than others, and highly variable
observations are given a lower weight. For example, if we are taking the average
from multiple sensors and one of the sensors is less accurate, then we might
downweight the data from that sensor.

• The data collected does not equally represent the different groups that we are
interested in measuring. For example, because of the way an online experiment
was conducted, we may not have a set of data that accurately reflects all groups in
the user base. To correct that, we can give a higher weight to the values from the
groups that were underrepresented.

Median and Robust Estimates
The median is the middle number on a sorted list of the data. If there is an even num‐
ber of data values, the middle value is one that is not actually in the data set, but
rather the average of the two values that divide the sorted data into upper and lower
halves. Compared to the mean, which uses all observations, the median depends only
on the values in the center of the sorted data. While this might seem to be a disadvan‐
tage, since the mean is much more sensitive to the data, there are many instances in
which the median is a better metric for location. Let’s say we want to look at typical
household incomes in neighborhoods around Lake Washington in Seattle. In com‐
paring the Medina neighborhood to the Windermere neighborhood, using the mean
would produce very different results because Bill Gates lives in Medina. If we use the
median, it won’t matter how rich Bill Gates is—the position of the middle observation
will remain the same.

10 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/uV4P0
https://oreil.ly/uV4P0

For the same reasons that one uses a weighted mean, it is also possible to compute a
weighted median. As with the median, we first sort the data, although each data value
has an associated weight. Instead of the middle number, the weighted median is a
value such that the sum of the weights is equal for the lower and upper halves of the
sorted list. Like the median, the weighted median is robust to outliers.

Outliers
The median is referred to as a robust estimate of location since it is not influenced by
outliers (extreme cases) that could skew the results. An outlier is any value that is very
distant from the other values in a data set. The exact definition of an outlier is some‐
what subjective, although certain conventions are used in various data summaries
and plots (see “Percentiles and Boxplots” on page 20). Being an outlier in itself does
not make a data value invalid or erroneous (as in the previous example with Bill
Gates). Still, outliers are often the result of data errors such as mixing data of different
units (kilometers versus meters) or bad readings from a sensor. When outliers are the
result of bad data, the mean will result in a poor estimate of location, while the
median will still be valid. In any case, outliers should be identified and are usually
worthy of further investigation.

Anomaly Detection

In contrast to typical data analysis, where outliers are sometimes
informative and sometimes a nuisance, in anomaly detection the
points of interest are the outliers, and the greater mass of data
serves primarily to define the “normal” against which anomalies
are measured.

The median is not the only robust estimate of location. In fact, a trimmed mean is
widely used to avoid the influence of outliers. For example, trimming the bottom and
top 10% (a common choice) of the data will provide protection against outliers in all
but the smallest data sets. The trimmed mean can be thought of as a compromise
between the median and the mean: it is robust to extreme values in the data, but uses
more data to calculate the estimate for location.

Other Robust Metrics for Location

Statisticians have developed a plethora of other estimators for loca‐
tion, primarily with the goal of developing an estimator more
robust than the mean and also more efficient (i.e., better able to
discern small location differences between data sets). While these
methods are potentially useful for small data sets, they are not
likely to provide added benefit for large or even moderately sized
data sets.

Estimates of Location | 11

Example: Location Estimates of Population and Murder Rates
Table 1-2 shows the first few rows in the data set containing population and murder
rates (in units of murders per 100,000 people per year) for each US state (2010
Census).

Table 1-2. A few rows of the data.frame state of population and murder rate by state
State Population Murder rate Abbreviation

1 Alabama 4,779,736 5.7 AL
2 Alaska 710,231 5.6 AK
3 Arizona 6,392,017 4.7 AZ
4 Arkansas 2,915,918 5.6 AR
5 California 37,253,956 4.4 CA
6 Colorado 5,029,196 2.8 CO
7 Connecticut 3,574,097 2.4 CT
8 Delaware 897,934 5.8 DE

Compute the mean, trimmed mean, and median for the population using R:
> state <- read.csv('state.csv')
> mean(state[['Population']])
[1] 6162876
> mean(state[['Population']], trim=0.1)
[1] 4783697
> median(state[['Population']])
[1] 4436370

To compute mean and median in Python we can use the pandas methods of the data
frame. The trimmed mean requires the trim_mean function in scipy.stats:

state = pd.read_csv('state.csv')
state['Population'].mean()
trim_mean(state['Population'], 0.1)
state['Population'].median()

The mean is bigger than the trimmed mean, which is bigger than the median.

This is because the trimmed mean excludes the largest and smallest five states
(trim=0.1 drops 10% from each end). If we want to compute the average murder rate
for the country, we need to use a weighted mean or median to account for different
populations in the states. Since base R doesn’t have a function for weighted median,
we need to install a package such as matrixStats:

> weighted.mean(state[['Murder.Rate']], w=state[['Population']])
[1] 4.445834
> library('matrixStats')

12 | Chapter 1: Exploratory Data Analysis

> weightedMedian(state[['Murder.Rate']], w=state[['Population']])
[1] 4.4

Weighted mean is available with NumPy. For weighted median, we can use the special‐
ized package wquantiles:

np.average(state['Murder.Rate'], weights=state['Population'])
wquantiles.median(state['Murder.Rate'], weights=state['Population'])

In this case, the weighted mean and the weighted median are about the same.

Key Ideas
• The basic metric for location is the mean, but it can be sensitive to extreme

values (outlier).
• Other metrics (median, trimmed mean) are less sensitive to outliers and unusual

distributions and hence are more robust.

Further Reading
• The Wikipedia article on central tendency contains an extensive discussion of

various measures of location.
• John Tukey’s 1977 classic Exploratory Data Analysis (Pearson) is still widely read.

Estimates of Variability
Location is just one dimension in summarizing a feature. A second dimension, varia‐
bility, also referred to as dispersion, measures whether the data values are tightly clus‐
tered or spread out. At the heart of statistics lies variability: measuring it, reducing it,
distinguishing random from real variability, identifying the various sources of real
variability, and making decisions in the presence of it.

Key Terms for Variability Metrics
Deviations

The difference between the observed values and the estimate of location.

Synonyms
errors, residuals

Variance
The sum of squared deviations from the mean divided by n – 1 where n is the
number of data values.

Estimates of Variability | 13

https://oreil.ly/4SIPQ
https://oreil.ly/qUW2i

Synonym
mean-squared-error

Standard deviation
The square root of the variance.

Mean absolute deviation
The mean of the absolute values of the deviations from the mean.

Synonyms
l1-norm, Manhattan norm

Median absolute deviation from the median
The median of the absolute values of the deviations from the median.

Range
The difference between the largest and the smallest value in a data set.

Order statistics
Metrics based on the data values sorted from smallest to biggest.

Synonym
ranks

Percentile
The value such that P percent of the values take on this value or less and (100–P)
percent take on this value or more.

Synonym
quantile

Interquartile range
The difference between the 75th percentile and the 25th percentile.

Synonym
IQR

Just as there are different ways to measure location (mean, median, etc.), there are
also different ways to measure variability.

Standard Deviation and Related Estimates
The most widely used estimates of variation are based on the differences, or devia‐
tions, between the estimate of location and the observed data. For a set of data
{1, 4, 4}, the mean is 3 and the median is 4. The deviations from the mean are the
differences: 1 – 3 = –2, 4 – 3 = 1, 4 – 3 = 1. These deviations tell us how dispersed the
data is around the central value.

14 | Chapter 1: Exploratory Data Analysis

One way to measure variability is to estimate a typical value for these deviations.
Averaging the deviations themselves would not tell us much—the negative deviations
offset the positive ones. In fact, the sum of the deviations from the mean is precisely
zero. Instead, a simple approach is to take the average of the absolute values of the
deviations from the mean. In the preceding example, the absolute value of the devia‐
tions is {2 1 1}, and their average is (2 + 1 + 1) / 3 = 1.33. This is known as the mean
absolute deviation and is computed with the formula:

Mean absolute deviation =
∑i = 1

n xi − x
n

where x is the sample mean.

The best-known estimates of variability are the variance and the standard deviation,
which are based on squared deviations. The variance is an average of the squared
deviations, and the standard deviation is the square root of the variance:

Variance = s2 =
∑i = 1

n xi − x 2

n − 1
Standard deviation = s = Variance

The standard deviation is much easier to interpret than the variance since it is on the
same scale as the original data. Still, with its more complicated and less intuitive for‐
mula, it might seem peculiar that the standard deviation is preferred in statistics over
the mean absolute deviation. It owes its preeminence to statistical theory: mathemati‐
cally, working with squared values is much more convenient than absolute values,
especially for statistical models.

Degrees of Freedom, and n or n – 1?
In statistics books, there is always some discussion of why we have n – 1 in the
denominator in the variance formula, instead of n, leading into the concept of degrees
of freedom. This distinction is not important since n is generally large enough that it
won’t make much difference whether you divide by n or n – 1. But in case you are
interested, here is the story. It is based on the premise that you want to make esti‐
mates about a population, based on a sample.

If you use the intuitive denominator of n in the variance formula, you will underesti‐
mate the true value of the variance and the standard deviation in the population. This
is referred to as a biased estimate. However, if you divide by n – 1 instead of n, the
variance becomes an unbiased estimate.

Estimates of Variability | 15

To fully explain why using n leads to a biased estimate involves the notion of degrees
of freedom, which takes into account the number of constraints in computing an esti‐
mate. In this case, there are n – 1 degrees of freedom since there is one constraint: the
standard deviation depends on calculating the sample mean. For most problems, data
scientists do not need to worry about degrees of freedom.

Neither the variance, the standard deviation, nor the mean absolute deviation is
robust to outliers and extreme values (see “Median and Robust Estimates” on page 10
for a discussion of robust estimates for location). The variance and standard devia‐
tion are especially sensitive to outliers since they are based on the squared deviations.

A robust estimate of variability is the median absolute deviation from the median or
MAD:

Median absolute deviation = Median x1 − m , x2 − m , ..., xN − m

where m is the median. Like the median, the MAD is not influenced by extreme val‐
ues. It is also possible to compute a trimmed standard deviation analogous to the
trimmed mean (see “Mean” on page 9).

The variance, the standard deviation, the mean absolute deviation,
and the median absolute deviation from the median are not equiv‐
alent estimates, even in the case where the data comes from a nor‐
mal distribution. In fact, the standard deviation is always greater
than the mean absolute deviation, which itself is greater than the
median absolute deviation. Sometimes, the median absolute devia‐
tion is multiplied by a constant scaling factor to put the MAD on
the same scale as the standard deviation in the case of a normal dis‐
tribution. The commonly used factor of 1.4826 means that 50% of
the normal distribution fall within the range ±MAD (see, e.g.,
https://oreil.ly/SfDk2).

Estimates Based on Percentiles
A different approach to estimating dispersion is based on looking at the spread of the
sorted data. Statistics based on sorted (ranked) data are referred to as order statistics.
The most basic measure is the range: the difference between the largest and smallest
numbers. The minimum and maximum values themselves are useful to know and are
helpful in identifying outliers, but the range is extremely sensitive to outliers and not
very useful as a general measure of dispersion in the data.

To avoid the sensitivity to outliers, we can look at the range of the data after dropping
values from each end. Formally, these types of estimates are based on differences

16 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/SfDk2

between percentiles. In a data set, the Pth percentile is a value such that at least P per‐
cent of the values take on this value or less and at least (100 – P) percent of the values
take on this value or more. For example, to find the 80th percentile, sort the data.
Then, starting with the smallest value, proceed 80 percent of the way to the largest
value. Note that the median is the same thing as the 50th percentile. The percentile is
essentially the same as a quantile, with quantiles indexed by fractions (so the .8 quan‐
tile is the same as the 80th percentile).

A common measurement of variability is the difference between the 25th percentile
and the 75th percentile, called the interquartile range (or IQR). Here is a simple exam‐
ple: {3,1,5,3,6,7,2,9}. We sort these to get {1,2,3,3,5,6,7,9}. The 25th percentile is at 2.5,
and the 75th percentile is at 6.5, so the interquartile range is 6.5 – 2.5 = 4. Software
can have slightly differing approaches that yield different answers (see the following
tip); typically, these differences are smaller.

For very large data sets, calculating exact percentiles can be computationally very
expensive since it requires sorting all the data values. Machine learning and statistical
software use special algorithms, such as [Zhang-Wang-2007], to get an approximate
percentile that can be calculated very quickly and is guaranteed to have a certain
accuracy.

Percentile: Precise De"nition

If we have an even number of data (n is even), then the percentile is
ambiguous under the preceding definition. In fact, we could take
on any value between the order statistics x j and x j + 1 where j
satisfies:

100 * j
n ≤ P < 100 * j + 1

n

Formally, the percentile is the weighted average:

Percentile P = 1 − w x j + wx j + 1

for some weight w between 0 and 1. Statistical software has slightly
differing approaches to choosing w. In fact, the R function quan
tile offers nine different alternatives to compute the quantile.
Except for small data sets, you don’t usually need to worry about
the precise way a percentile is calculated. At the time of this writ‐
ing, Python’s numpy.quantile supports only one approach, linear
interpolation.

Estimates of Variability | 17

Example: Variability Estimates of State Population
Table 1-3 (repeated from Table 1-2 for convenience) shows the first few rows in the
data set containing population and murder rates for each state.

Table 1-3. A few rows of the data.frame state of population and murder rate by state
State Population Murder rate Abbreviation

1 Alabama 4,779,736 5.7 AL
2 Alaska 710,231 5.6 AK
3 Arizona 6,392,017 4.7 AZ
4 Arkansas 2,915,918 5.6 AR
5 California 37,253,956 4.4 CA
6 Colorado 5,029,196 2.8 CO
7 Connecticut 3,574,097 2.4 CT
8 Delaware 897,934 5.8 DE

Using R’s built-in functions for the standard deviation, the interquartile range (IQR),
and the median absolute deviation from the median (MAD), we can compute esti‐
mates of variability for the state population data:

> sd(state[['Population']])
[1] 6848235
> IQR(state[['Population']])
[1] 4847308
> mad(state[['Population']])
[1] 3849870

The pandas data frame provides methods for calculating standard deviation and
quantiles. Using the quantiles, we can easily determine the IQR. For the robust MAD,
we use the function robust.scale.mad from the statsmodels package:

state['Population'].std()
state['Population'].quantile(0.75) - state['Population'].quantile(0.25)
robust.scale.mad(state['Population'])

The standard deviation is almost twice as large as the MAD (in R, by default, the scale
of the MAD is adjusted to be on the same scale as the mean). This is not surprising
since the standard deviation is sensitive to outliers.

18 | Chapter 1: Exploratory Data Analysis

Key Ideas
• Variance and standard deviation are the most widespread and routinely reported

statistics of variability.
• Both are sensitive to outliers.
• More robust metrics include mean absolute deviation, median absolute deviation

from the median, and percentiles (quantiles).

Further Reading
• David Lane’s online statistics resource has a section on percentiles.
• Kevin Davenport has a useful post on R-Bloggers about deviations from the

median and their robust properties.

Exploring the Data Distribution
Each of the estimates we’ve covered sums up the data in a single number to describe
the location or variability of the data. It is also useful to explore how the data is dis‐
tributed overall.

Key Terms for Exploring the Distribution
Boxplot

A plot introduced by Tukey as a quick way to visualize the distribution of data.

Synonym
box and whiskers plot

Frequency table
A tally of the count of numeric data values that fall into a set of intervals (bins).

Histogram
A plot of the frequency table with the bins on the x-axis and the count (or pro‐
portion) on the y-axis. While visually similar, bar charts should not be confused
with histograms. See “Exploring Binary and Categorical Data” on page 27 for a
discussion of the difference.

Density plot
A smoothed version of the histogram, often based on a kernel density estimate.

Exploring the Data Distribution | 19

https://oreil.ly/o2fBI
https://oreil.ly/E7zcG

Percentiles and Boxplots
In “Estimates Based on Percentiles” on page 16, we explored how percentiles can be
used to measure the spread of the data. Percentiles are also valuable for summarizing
the entire distribution. It is common to report the quartiles (25th, 50th, and 75th per‐
centiles) and the deciles (the 10th, 20th, …, 90th percentiles). Percentiles are espe‐
cially valuable for summarizing the tails (the outer range) of the distribution. Popular
culture has coined the term one-percenters to refer to the people in the top 99th per‐
centile of wealth.

Table 1-4 displays some percentiles of the murder rate by state. In R, this would be
produced by the quantile function:

quantile(state[['Murder.Rate']], p=c(.05, .25, .5, .75, .95))
 5% 25% 50% 75% 95%
1.600 2.425 4.000 5.550 6.510

The pandas data frame method quantile provides it in Python:
state['Murder.Rate'].quantile([0.05, 0.25, 0.5, 0.75, 0.95])

Table 1-4. Percentiles of murder rate by state
5% 25% 50% 75% 95%
1.60 2.42 4.00 5.55 6.51

The median is 4 murders per 100,000 people, although there is quite a bit of variabil‐
ity: the 5th percentile is only 1.6 and the 95th percentile is 6.51.

Boxplots, introduced by Tukey [Tukey-1977], are based on percentiles and give a
quick way to visualize the distribution of data. Figure 1-2 shows a boxplot of the pop‐
ulation by state produced by R:

boxplot(state[['Population']]/1000000, ylab='Population (millions)')

pandas provides a number of basic exploratory plots for data frame; one of them is
boxplots:

ax = (state['Population']/1_000_000).plot.box()
ax.set_ylabel('Population (millions)')

20 | Chapter 1: Exploratory Data Analysis

Figure 1-2. Boxplot of state populations

From this boxplot we can immediately see that the median state population is about 5
million, half the states fall between about 2 million and about 7 million, and there are
some high population outliers. The top and bottom of the box are the 75th and 25th
percentiles, respectively. The median is shown by the horizontal line in the box. The
dashed lines, referred to as whiskers, extend from the top and bottom of the box to
indicate the range for the bulk of the data. There are many variations of a boxplot;
see, for example, the documentation for the R function boxplot [R-base-2015]. By
default, the R function extends the whiskers to the furthest point beyond the box,
except that it will not go beyond 1.5 times the IQR. Matplotlib uses the same imple‐
mentation; other software may use a different rule.

Any data outside of the whiskers is plotted as single points or circles (often consid‐
ered outliers).

Exploring the Data Distribution | 21

Frequency Tables and Histograms
A frequency table of a variable divides up the variable range into equally spaced seg‐
ments and tells us how many values fall within each segment. Table 1-5 shows a fre‐
quency table of the population by state computed in R:

breaks <- seq(from=min(state[['Population']]),
 to=max(state[['Population']]), length=11)
pop_freq <- cut(state[['Population']], breaks=breaks,
 right=TRUE, include.lowest=TRUE)
table(pop_freq)

The function pandas.cut creates a series that maps the values into the segments.
Using the method value_counts, we get the frequency table:

binnedPopulation = pd.cut(state['Population'], 10)
binnedPopulation.value_counts()

Table 1-5. A frequency table of population by state
BinNumber BinRange Count States
1 563,626–4,232,658 24 WY,VT,ND,AK,SD,DE,MT,RI,NH,ME,HI,ID,NE,WV,NM,NV,UT,KS,AR,MS,IA,CT,OK,OR
2 4,232,659–

7,901,691
14 KY,LA,SC,AL,CO,MN,WI,MD,MO,TN,AZ,IN,MA,WA

3 7,901,692–
11,570,724

6 VA,NJ,NC,GA,MI,OH

4 11,570,725–
15,239,757

2 PA,IL

5 15,239,758–
18,908,790

1 FL

6 18,908,791–
22,577,823

1 NY

7 22,577,824–
26,246,856

1 TX

8 26,246,857–
29,915,889

0

9 29,915,890–
33,584,922

0

10 33,584,923–
37,253,956

1 CA

The least populous state is Wyoming, with 563,626 people, and the most populous is
California, with 37,253,956 people. This gives us a range of 37,253,956 – 563,626 =
36,690,330, which we must divide up into equal size bins—let’s say 10 bins. With 10
equal size bins, each bin will have a width of 3,669,033, so the first bin will span from
563,626 to 4,232,658. By contrast, the top bin, 33,584,923 to 37,253,956, has only one
state: California. The two bins immediately below California are empty, until we

22 | Chapter 1: Exploratory Data Analysis

reach Texas. It is important to include the empty bins; the fact that there are no values
in those bins is useful information. It can also be useful to experiment with different
bin sizes. If they are too large, important features of the distribution can be obscured.
If they are too small, the result is too granular, and the ability to see the bigger picture
is lost.

Both frequency tables and percentiles summarize the data by creat‐
ing bins. In general, quartiles and deciles will have the same count
in each bin (equal-count bins), but the bin sizes will be different.
The frequency table, by contrast, will have different counts in the
bins (equal-size bins), and the bin sizes will be the same.

A histogram is a way to visualize a frequency table, with bins on the x-axis and the
data count on the y-axis. In Figure 1-3, for example, the bin centered at 10 million
(1e+07) runs from roughly 8 million to 12 million, and there are six states in that bin.
To create a histogram corresponding to Table 1-5 in R, use the hist function with the
breaks argument:

hist(state[['Population']], breaks=breaks)

pandas supports histograms for data frames with the DataFrame.plot.hist method.
Use the keyword argument bins to define the number of bins. The various plot meth‐
ods return an axis object that allows further fine-tuning of the visualization using
Matplotlib:

ax = (state['Population'] / 1_000_000).plot.hist(figsize=(4, 4))
ax.set_xlabel('Population (millions)')

The histogram is shown in Figure 1-3. In general, histograms are plotted such that:

• Empty bins are included in the graph.
• Bins are of equal width.
• The number of bins (or, equivalently, bin size) is up to the user.
• Bars are contiguous—no empty space shows between bars, unless there is an

empty bin.

Exploring the Data Distribution | 23

Figure 1-3. Histogram of state populations

Statistical Moments

In statistical theory, location and variability are referred to as the
first and second moments of a distribution. The third and fourth
moments are called skewness and kurtosis. Skewness refers to
whether the data is skewed to larger or smaller values, and kurtosis
indicates the propensity of the data to have extreme values. Gener‐
ally, metrics are not used to measure skewness and kurtosis;
instead, these are discovered through visual displays such as Fig‐
ures 1-2 and 1-3.

Density Plots and Estimates
Related to the histogram is a density plot, which shows the distribution of data values
as a continuous line. A density plot can be thought of as a smoothed histogram,
although it is typically computed directly from the data through a kernel density esti‐
mate (see [Duong-2001] for a short tutorial). Figure 1-4 displays a density estimate
superposed on a histogram. In R, you can compute a density estimate using the
density function:

24 | Chapter 1: Exploratory Data Analysis

hist(state[['Murder.Rate']], freq=FALSE)
lines(density(state[['Murder.Rate']]), lwd=3, col='blue')

pandas provides the density method to create a density plot. Use the argument
bw_method to control the smoothness of the density curve:

ax = state['Murder.Rate'].plot.hist(density=True, xlim=[0,12], bins=range(1,12))
state['Murder.Rate'].plot.density(ax=ax)
ax.set_xlabel('Murder Rate (per 100,000)')

Plot functions often take an optional axis (ax) argument, which will cause the
plot to be added to the same graph.

A key distinction from the histogram plotted in Figure 1-3 is the scale of the y-axis: a
density plot corresponds to plotting the histogram as a proportion rather than counts
(you specify this in R using the argument freq=FALSE). Note that the total area under
the density curve = 1, and instead of counts in bins you calculate areas under the
curve between any two points on the x-axis, which correspond to the proportion of
the distribution lying between those two points.

Figure 1-4. Density of state murder rates

Exploring the Data Distribution | 25

Density Estimation

Density estimation is a rich topic with a long history in statistical
literature. In fact, over 20 R packages have been published that
offer functions for density estimation. [Deng-Wickham-2011] give
a comprehensive review of R packages, with a particular recom‐
mendation for ASH or KernSmooth. The density estimation methods
in pandas and scikit-learn also offer good implementations. For
many data science problems, there is no need to worry about the
various types of density estimates; it suffices to use the base
functions.

Key Ideas
• A frequency histogram plots frequency counts on the y-axis and variable values

on the x-axis; it gives a sense of the distribution of the data at a glance.
• A frequency table is a tabular version of the frequency counts found in a

histogram.
• A boxplot—with the top and bottom of the box at the 75th and 25th percentiles,

respectively—also gives a quick sense of the distribution of the data; it is often
used in side-by-side displays to compare distributions.

• A density plot is a smoothed version of a histogram; it requires a function to esti‐
mate a plot based on the data (multiple estimates are possible, of course).

Further Reading
• A SUNY Oswego professor provides a step-by-step guide to creating a boxplot.
• Density estimation in R is covered in Henry Deng and Hadley Wickham’s paper

of the same name.
• R-Bloggers has a useful post on histograms in R, including customization ele‐

ments, such as binning (breaks).
• R-Bloggers also has a similar post on boxplots in R.
• Matthew Conlen published an interactive presentation that demonstrates the

effect of choosing different kernels and bandwidth on kernel density estimates.

26 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/wTpnE
https://oreil.ly/TbWYS
https://oreil.ly/TbWYS
https://oreil.ly/Ynp-n
https://oreil.ly/0DSb2
https://oreil.ly/bC9nu

Exploring Binary and Categorical Data
For categorical data, simple proportions or percentages tell the story of the data.

Key Terms for Exploring Categorical Data
Mode

The most commonly occurring category or value in a data set.

Expected value
When the categories can be associated with a numeric value, this gives an average
value based on a category’s probability of occurrence.

Bar charts
The frequency or proportion for each category plotted as bars.

Pie charts
The frequency or proportion for each category plotted as wedges in a pie.

Getting a summary of a binary variable or a categorical variable with a few categories
is a fairly easy matter: we just figure out the proportion of 1s, or the proportions of
the important categories. For example, Table 1-6 shows the percentage of delayed
flights by the cause of delay at Dallas/Fort Worth Airport since 2010. Delays are cate‐
gorized as being due to factors under carrier control, air traffic control (ATC) system
delays, weather, security, or a late inbound aircraft.

Table 1-6. Percentage of delays by cause at Dallas/Fort Worth Airport
Carrier ATC Weather Security Inbound
23.02 30.40 4.03 0.12 42.43

Bar charts, seen often in the popular press, are a common visual tool for displaying a
single categorical variable. Categories are listed on the x-axis, and frequencies or pro‐
portions on the y-axis. Figure 1-5 shows the airport delays per year by cause for
Dallas/Fort Worth (DFW), and it is produced with the R function barplot:

barplot(as.matrix(dfw) / 6, cex.axis=0.8, cex.names=0.7,
 xlab='Cause of delay', ylab='Count')

pandas also supports bar charts for data frames:
ax = dfw.transpose().plot.bar(figsize=(4, 4), legend=False)
ax.set_xlabel('Cause of delay')
ax.set_ylabel('Count')

Exploring Binary and Categorical Data | 27

Figure 1-5. Bar chart of airline delays at DFW by cause

Note that a bar chart resembles a histogram; in a bar chart the x-axis represents dif‐
ferent categories of a factor variable, while in a histogram the x-axis represents values
of a single variable on a numeric scale. In a histogram, the bars are typically shown
touching each other, with gaps indicating values that did not occur in the data. In a
bar chart, the bars are shown separate from one another.

Pie charts are an alternative to bar charts, although statisticians and data visualization
experts generally eschew pie charts as less visually informative (see [Few-2007]).

28 | Chapter 1: Exploratory Data Analysis

Numerical Data as Categorical Data

In “Frequency Tables and Histograms” on page 22, we looked at
frequency tables based on binning the data. This implicitly converts
the numeric data to an ordered factor. In this sense, histograms and
bar charts are similar, except that the categories on the x-axis in the
bar chart are not ordered. Converting numeric data to categorical
data is an important and widely used step in data analysis since it
reduces the complexity (and size) of the data. This aids in the dis‐
covery of relationships between features, particularly at the initial
stages of an analysis.

Mode
The mode is the value—or values in case of a tie—that appears most often in the data.
For example, the mode of the cause of delay at Dallas/Fort Worth airport is
“Inbound.” As another example, in most parts of the United States, the mode for reli‐
gious preference would be Christian. The mode is a simple summary statistic for
categorical data, and it is generally not used for numeric data.

Expected Value
A special type of categorical data is data in which the categories represent or can be
mapped to discrete values on the same scale. A marketer for a new cloud technology,
for example, offers two levels of service, one priced at $300/month and another at
$50/month. The marketer offers free webinars to generate leads, and the firm figures
that 5% of the attendees will sign up for the $300 service, 15% will sign up for the $50
service, and 80% will not sign up for anything. This data can be summed up, for
financial purposes, in a single “expected value,” which is a form of weighted mean, in
which the weights are probabilities.

The expected value is calculated as follows:

1. Multiply each outcome by its probability of occurrence.
2. Sum these values.

In the cloud service example, the expected value of a webinar attendee is thus $22.50
per month, calculated as follows:

EV = 0 . 05 300 + 0 . 15 50 + 0 . 80 0 = 22 . 5

The expected value is really a form of weighted mean: it adds the ideas of future
expectations and probability weights, often based on subjective judgment. Expected
value is a fundamental concept in business valuation and capital budgeting—for

Exploring Binary and Categorical Data | 29

example, the expected value of five years of profits from a new acquisition, or the
expected cost savings from new patient management software at a clinic.

Probability
We referred above to the probability of a value occurring. Most people have an intu‐
itive understanding of probability, encountering the concept frequently in weather
forecasts (the chance of rain) or sports analysis (the probability of winning). Sports
and games are more often expressed as odds, which are readily convertible to proba‐
bilities (if the odds that a team will win are 2 to 1, its probability of winning is 2/(2+1)
= 2/3). Surprisingly, though, the concept of probability can be the source of deep
philosophical discussion when it comes to defining it. Fortunately, we do not need a
formal mathematical or philosophical definition here. For our purposes, the probabil‐
ity that an event will happen is the proportion of times it will occur if the situation
could be repeated over and over, countless times. Most often this is an imaginary con‐
struction, but it is an adequate operational understanding of probability.

Key Ideas
• Categorical data is typically summed up in proportions and can be visualized in a

bar chart.
• Categories might represent distinct things (apples and oranges, male and female),

levels of a factor variable (low, medium, and high), or numeric data that has been
binned.

• Expected value is the sum of values times their probability of occurrence, often
used to sum up factor variable levels.

Further Reading
No statistics course is complete without a lesson on misleading graphs, which often
involves bar charts and pie charts.

Correlation
Exploratory data analysis in many modeling projects (whether in data science or in
research) involves examining correlation among predictors, and between predictors
and a target variable. Variables X and Y (each with measured data) are said to be posi‐
tively correlated if high values of X go with high values of Y, and low values of X go
with low values of Y. If high values of X go with low values of Y, and vice versa, the
variables are negatively correlated.

30 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/rDMuT

Key Terms for Correlation
Correlation coe!cient

A metric that measures the extent to which numeric variables are associated with
one another (ranges from –1 to +1).

Correlation matrix
A table where the variables are shown on both rows and columns, and the cell
values are the correlations between the variables.

Scatterplot
A plot in which the x-axis is the value of one variable, and the y-axis the value of
another.

Consider these two variables, perfectly correlated in the sense that each goes from low
to high:

v1: {1, 2, 3}
v2: {4, 5, 6}

The vector sum of products is 1 · 4 + 2 · 5 + 3 · 6 = 32. Now try shuffling one of them
and recalculating—the vector sum of products will never be higher than 32. So this
sum of products could be used as a metric; that is, the observed sum of 32 could be
compared to lots of random shufflings (in fact, this idea relates to a resampling-based
estimate; see “Permutation Test” on page 97). Values produced by this metric, though,
are not that meaningful, except by reference to the resampling distribution.

More useful is a standardized variant: the correlation coe$cient, which gives an esti‐
mate of the correlation between two variables that always lies on the same scale. To
compute Pearson’s correlation coe$cient, we multiply deviations from the mean for
variable 1 times those for variable 2, and divide by the product of the standard
deviations:

r =
∑i = 1

n xi − x yi − y
n − 1 sxsy

Note that we divide by n – 1 instead of n; see “Degrees of Freedom, and n or n – 1?”
on page 15 for more details. The correlation coefficient always lies between +1
(perfect positive correlation) and –1 (perfect negative correlation); 0 indicates no
correlation.

Variables can have an association that is not linear, in which case the correlation coef‐
ficient may not be a useful metric. The relationship between tax rates and revenue

Correlation | 31

raised is an example: as tax rates increase from zero, the revenue raised also increases.
However, once tax rates reach a high level and approach 100%, tax avoidance increa‐
ses and tax revenue actually declines.

Table 1-7, called a correlation matrix, shows the correlation between the daily returns
for telecommunication stocks from July 2012 through June 2015. From the table, you
can see that Verizon (VZ) and ATT (T) have the highest correlation. Level 3 (LVLT),
which is an infrastructure company, has the lowest correlation with the others. Note
the diagonal of 1s (the correlation of a stock with itself is 1) and the redundancy of
the information above and below the diagonal.

Table 1-7. Correlation between telecommunication stock returns
T CTL FTR VZ LVLT

T 1.000 0.475 0.328 0.678 0.279
CTL 0.475 1.000 0.420 0.417 0.287
FTR 0.328 0.420 1.000 0.287 0.260
VZ 0.678 0.417 0.287 1.000 0.242
LVLT 0.279 0.287 0.260 0.242 1.000

A table of correlations like Table 1-7 is commonly plotted to visually display the rela‐
tionship between multiple variables. Figure 1-6 shows the correlation between the
daily returns for major exchange-traded funds (ETFs). In R, we can easily create this
using the package corrplot:

etfs <- sp500_px[row.names(sp500_px) > '2012-07-01',
 sp500_sym[sp500_sym$sector == 'etf', 'symbol']]
library(corrplot)
corrplot(cor(etfs), method='ellipse')

It is possible to create the same graph in Python, but there is no implementation in
the common packages. However, most support the visualization of correlation matri‐
ces using heatmaps. The following code demonstrates this using the seaborn.heat
map package. In the accompanying source code repository, we include Python code to
generate the more comprehensive visualization:

etfs = sp500_px.loc[sp500_px.index > '2012-07-01',
 sp500_sym[sp500_sym['sector'] == 'etf']['symbol']]
sns.heatmap(etfs.corr(), vmin=-1, vmax=1,
 cmap=sns.diverging_palette(20, 220, as_cmap=True))

The ETFs for the S&P 500 (SPY) and the Dow Jones Index (DIA) have a high correla‐
tion. Similarly, the QQQ and the XLK, composed mostly of technology companies,
are positively correlated. Defensive ETFs, such as those tracking gold prices (GLD),
oil prices (USO), or market volatility (VXX), tend to be weakly or negatively correla‐
ted with the other ETFs. The orientation of the ellipse indicates whether two variables

32 | Chapter 1: Exploratory Data Analysis

are positively correlated (ellipse is pointed to the top right) or negatively correlated
(ellipse is pointed to the top left). The shading and width of the ellipse indicate the
strength of the association: thinner and darker ellipses correspond to stronger
relationships.

Figure 1-6. Correlation between ETF returns

Like the mean and standard deviation, the correlation coefficient is sensitive to outli‐
ers in the data. Software packages offer robust alternatives to the classical correlation
coefficient. For example, the R package robust uses the function covRob to compute a
robust estimate of correlation. The methods in the scikit-learn module
sklearn.covariance implement a variety of approaches.

Correlation | 33

https://oreil.ly/isORz
https://oreil.ly/su7wi

Other Correlation Estimates

Statisticians long ago proposed other types of correlation coeffi‐
cients, such as Spearman’s rho or Kendall’s tau. These are correla‐
tion coefficients based on the rank of the data. Since they work
with ranks rather than values, these estimates are robust to outliers
and can handle certain types of nonlinearities. However, data scien‐
tists can generally stick to Pearson’s correlation coefficient, and its
robust alternatives, for exploratory analysis. The appeal of rank-
based estimates is mostly for smaller data sets and specific hypothe‐
sis tests.

Scatterplots
The standard way to visualize the relationship between two measured data variables is
with a scatterplot. The x-axis represents one variable and the y-axis another, and each
point on the graph is a record. See Figure 1-7 for a plot of the correlation between the
daily returns for ATT and Verizon. This is produced in R with the command:

plot(telecom$T, telecom$VZ, xlab='ATT (T)', ylab='Verizon (VZ)')

The same graph can be generated in Python using the pandas scatter method:
ax = telecom.plot.scatter(x='T', y='VZ', figsize=(4, 4), marker='$\u25EF$')
ax.set_xlabel('ATT (T)')
ax.set_ylabel('Verizon (VZ)')
ax.axhline(0, color='grey', lw=1)
ax.axvline(0, color='grey', lw=1)

The returns have a positive relationship: while they cluster around zero, on most
days, the stocks go up or go down in tandem (upper-right and lower-left quadrants).
There are fewer days where one stock goes down significantly while the other stock
goes up, or vice versa (lower-right and upper-left quadrants).

While the plot Figure 1-7 displays only 754 data points, it’s already obvious how diffi‐
cult it is to identify details in the middle of the plot. We will see later how adding
transparency to the points, or using hexagonal binning and density plots, can help to
find additional structure in the data.

34 | Chapter 1: Exploratory Data Analysis

Figure 1-7. Scatterplot of correlation between returns for ATT and Verizon

Key Ideas
• The correlation coefficient measures the extent to which two paired variables

(e.g., height and weight for individuals) are associated with one another.
• When high values of v1 go with high values of v2, v1 and v2 are positively

associated.
• When high values of v1 go with low values of v2, v1 and v2 are negatively

associated.
• The correlation coefficient is a standardized metric, so that it always ranges from

–1 (perfect negative correlation) to +1 (perfect positive correlation).
• A correlation coefficient of zero indicates no correlation, but be aware that ran‐

dom arrangements of data will produce both positive and negative values for the
correlation coefficient just by chance.

Correlation | 35

Further Reading
Statistics, 4th ed., by David Freedman, Robert Pisani, and Roger Purves (W. W. Nor‐
ton, 2007) has an excellent discussion of correlation.

Exploring Two or More Variables
Familiar estimators like mean and variance look at variables one at a time (univariate
analysis). Correlation analysis (see “Correlation” on page 30) is an important method
that compares two variables (bivariate analysis). In this section we look at additional
estimates and plots, and at more than two variables (multivariate analysis).

Key Terms for Exploring Two or More Variables
Contingency table

A tally of counts between two or more categorical variables.

Hexagonal binning
A plot of two numeric variables with the records binned into hexagons.

Contour plot
A plot showing the density of two numeric variables like a topographical map.

Violin plot
Similar to a boxplot but showing the density estimate.

Like univariate analysis, bivariate analysis involves both computing summary statis‐
tics and producing visual displays. The appropriate type of bivariate or multivariate
analysis depends on the nature of the data: numeric versus categorical.

Hexagonal Binning and Contours
(Plotting Numeric Versus Numeric Data)
Scatterplots are fine when there is a relatively small number of data values. The plot
of stock returns in Figure 1-7 involves only about 750 points. For data sets with hun‐
dreds of thousands or millions of records, a scatterplot will be too dense, so we need a
different way to visualize the relationship. To illustrate, consider the data set kc_tax,
which contains the tax-assessed values for residential properties in King County,
Washington. In order to focus on the main part of the data, we strip out very expen‐
sive and very small or large residences using the subset function:

36 | Chapter 1: Exploratory Data Analysis

kc_tax0 <- subset(kc_tax, TaxAssessedValue < 750000 &
 SqFtTotLiving > 100 &
 SqFtTotLiving < 3500)
nrow(kc_tax0)
432693

In pandas, we filter the data set as follows:
kc_tax0 = kc_tax.loc[(kc_tax.TaxAssessedValue < 750000) &
 (kc_tax.SqFtTotLiving > 100) &
 (kc_tax.SqFtTotLiving < 3500), :]
kc_tax0.shape
(432693, 3)

Figure 1-8 is a hexagonal binning plot of the relationship between the finished square
feet and the tax-assessed value for homes in King County. Rather than plotting
points, which would appear as a monolithic dark cloud, we grouped the records into
hexagonal bins and plotted the hexagons with a color indicating the number of
records in that bin. In this chart, the positive relationship between square feet and
tax-assessed value is clear. An interesting feature is the hint of additional bands above
the main (darkest) band at the bottom, indicating homes that have the same square
footage as those in the main band but a higher tax-assessed value.

Figure 1-8 was generated by the powerful R package ggplot2, developed by Hadley
Wickham [ggplot2]. ggplot2 is one of several new software libraries for advanced
exploratory visual analysis of data; see “Visualizing Multiple Variables” on page 43:

ggplot(kc_tax0, (aes(x=SqFtTotLiving, y=TaxAssessedValue))) +
 stat_binhex(color='white') +
 theme_bw() +
 scale_fill_gradient(low='white', high='black') +
 labs(x='Finished Square Feet', y='Tax-Assessed Value')

In Python, hexagonal binning plots are readily available using the pandas data frame
method hexbin:

ax = kc_tax0.plot.hexbin(x='SqFtTotLiving', y='TaxAssessedValue',
 gridsize=30, sharex=False, figsize=(5, 4))
ax.set_xlabel('Finished Square Feet')
ax.set_ylabel('Tax-Assessed Value')

Exploring Two or More Variables | 37

Figure 1-8. Hexagonal binning for tax-assessed value versus #nished square feet

Figure 1-9 uses contours overlaid onto a scatterplot to visualize the relationship
between two numeric variables. The contours are essentially a topographical map to
two variables; each contour band represents a specific density of points, increasing as
one nears a “peak.” This plot shows a similar story as Figure 1-8: there is a secondary
peak “north” of the main peak. This chart was also created using ggplot2 with the
built-in geom_density2d function:

ggplot(kc_tax0, aes(SqFtTotLiving, TaxAssessedValue)) +
 theme_bw() +
 geom_point(alpha=0.1) +
 geom_density2d(color='white') +
 labs(x='Finished Square Feet', y='Tax-Assessed Value')

The seaborn kdeplot function in Python creates a contour plot:
ax = sns.kdeplot(kc_tax0.SqFtTotLiving, kc_tax0.TaxAssessedValue, ax=ax)
ax.set_xlabel('Finished Square Feet')
ax.set_ylabel('Tax-Assessed Value')

38 | Chapter 1: Exploratory Data Analysis

Figure 1-9. Contour plot for tax-assessed value versus #nished square feet

Other types of charts are used to show the relationship between two numeric vari‐
ables, including heat maps. Heat maps, hexagonal binning, and contour plots all give
a visual representation of a two-dimensional density. In this way, they are natural
analogs to histograms and density plots.

Two Categorical Variables
A useful way to summarize two categorical variables is a contingency table—a table of
counts by category. Table 1-8 shows the contingency table between the grade of a per‐
sonal loan and the outcome of that loan. This is taken from data provided by Lending
Club, a leader in the peer-to-peer lending business. The grade goes from A (high) to
G (low). The outcome is either fully paid, current, late, or charged off (the balance of
the loan is not expected to be collected). This table shows the count and row percen‐
tages. High-grade loans have a very low late/charge-off percentage as compared with
lower-grade loans.

Exploring Two or More Variables | 39

Table 1-8. Contingency table of loan grade and status
Grade Charged o! Current Fully paid Late Total
A 1562 50051 20408 469 72490

0.022 0.690 0.282 0.006 0.161
B 5302 93852 31160 2056 132370

0.040 0.709 0.235 0.016 0.294
C 6023 88928 23147 2777 120875

0.050 0.736 0.191 0.023 0.268
D 5007 53281 13681 2308 74277

0.067 0.717 0.184 0.031 0.165
E 2842 24639 5949 1374 34804

0.082 0.708 0.171 0.039 0.077
F 1526 8444 2328 606 12904

0.118 0.654 0.180 0.047 0.029
G 409 1990 643 199 3241

0.126 0.614 0.198 0.061 0.007

Total 22671 321185 97316 9789 450961

Contingency tables can look only at counts, or they can also include column and total
percentages. Pivot tables in Excel are perhaps the most common tool used to create
contingency tables. In R, the CrossTable function in the descr package produces
contingency tables, and the following code was used to create Table 1-8:

library(descr)
x_tab <- CrossTable(lc_loans$grade, lc_loans$status,
 prop.c=FALSE, prop.chisq=FALSE, prop.t=FALSE)

The pivot_table method creates the pivot table in Python. The aggfunc argument
allows us to get the counts. Calculating the percentages is a bit more involved:

crosstab = lc_loans.pivot_table(index='grade', columns='status',
 aggfunc=lambda x: len(x), margins=True)

df = crosstab.loc['A':'G',:].copy()
df.loc[:,'Charged Off':'Late'] = df.loc[:,'Charged Off':'Late'].div(df['All'],
 axis=0)
df['All'] = df['All'] / sum(df['All'])
perc_crosstab = df

The margins keyword argument will add the column and row sums.

We create a copy of the pivot table, ignoring the column sums.

We divide the rows with the row sum.

40 | Chapter 1: Exploratory Data Analysis

We divide the 'All' column by its sum.

Categorical and Numeric Data
Boxplots (see “Percentiles and Boxplots” on page 20) are a simple way to visually
compare the distributions of a numeric variable grouped according to a categorical
variable. For example, we might want to compare how the percentage of flight delays
varies across airlines. Figure 1-10 shows the percentage of flights in a month that
were delayed where the delay was within the carrier’s control:

boxplot(pct_carrier_delay ~ airline, data=airline_stats, ylim=c(0, 50))

The pandas boxplot method takes the by argument that splits the data set into groups
and creates the individual boxplots:

ax = airline_stats.boxplot(by='airline', column='pct_carrier_delay')
ax.set_xlabel('')
ax.set_ylabel('Daily % of Delayed Flights')
plt.suptitle('')

Figure 1-10. Boxplot of percent of airline delays by carrier

Exploring Two or More Variables | 41

Alaska stands out as having the fewest delays, while American has the most delays:
the lower quartile for American is higher than the upper quartile for Alaska.

A violin plot, introduced by [Hintze-Nelson-1998], is an enhancement to the boxplot
and plots the density estimate with the density on the y-axis. The density is mirrored
and flipped over, and the resulting shape is filled in, creating an image resembling a
violin. The advantage of a violin plot is that it can show nuances in the distribution
that aren’t perceptible in a boxplot. On the other hand, the boxplot more clearly
shows the outliers in the data. In ggplot2, the function geom_violin can be used to
create a violin plot as follows:

ggplot(data=airline_stats, aes(airline, pct_carrier_delay)) +
 ylim(0, 50) +
 geom_violin() +
 labs(x='', y='Daily % of Delayed Flights')

Violin plots are available with the violinplot method of the seaborn package:
ax = sns.violinplot(airline_stats.airline, airline_stats.pct_carrier_delay,
 inner='quartile', color='white')
ax.set_xlabel('')
ax.set_ylabel('Daily % of Delayed Flights')

The corresponding plot is shown in Figure 1-11. The violin plot shows a concentra‐
tion in the distribution near zero for Alaska and, to a lesser extent, Delta. This phe‐
nomenon is not as obvious in the boxplot. You can combine a violin plot with a
boxplot by adding geom_boxplot to the plot (although this works best when colors
are used).

42 | Chapter 1: Exploratory Data Analysis

Figure 1-11. Violin plot of percent of airline delays by carrier

Visualizing Multiple Variables
The types of charts used to compare two variables—scatterplots, hexagonal binning,
and boxplots—are readily extended to more variables through the notion of condi‐
tioning. As an example, look back at Figure 1-8, which showed the relationship
between homes’ finished square feet and their tax-assessed values. We observed that
there appears to be a cluster of homes that have higher tax-assessed value per square
foot. Diving deeper, Figure 1-12 accounts for the effect of location by plotting the
data for a set of zip codes. Now the picture is much clearer: tax-assessed value is
much higher in some zip codes (98105, 98126) than in others (98108, 98188). This
disparity gives rise to the clusters observed in Figure 1-8.

Exploring Two or More Variables | 43

We created Figure 1-12 using ggplot2 and the idea of facets, or a conditioning vari‐
able (in this case, zip code):

ggplot(subset(kc_tax0, ZipCode %in% c(98188, 98105, 98108, 98126)),
 aes(x=SqFtTotLiving, y=TaxAssessedValue)) +
 stat_binhex(color='white') +
 theme_bw() +
 scale_fill_gradient(low='white', high='blue') +
 labs(x='Finished Square Feet', y='Tax-Assessed Value') +
 facet_wrap('ZipCode')

Use the ggplot functions facet_wrap and facet_grid to specify the condition‐
ing variable.

Figure 1-12. Tax-assessed value versus #nished square feet by zip code

Most Python packages base their visualizations on Matplotlib. While it is in princi‐
ple possible to create faceted graphs using Matplotlib, the code can get complicated.
Fortunately, seaborn has a relatively straightforward way of creating these graphs:

44 | Chapter 1: Exploratory Data Analysis

zip_codes = [98188, 98105, 98108, 98126]
kc_tax_zip = kc_tax0.loc[kc_tax0.ZipCode.isin(zip_codes),:]
kc_tax_zip

def hexbin(x, y, color, **kwargs):
 cmap = sns.light_palette(color, as_cmap=True)
 plt.hexbin(x, y, gridsize=25, cmap=cmap, **kwargs)

g = sns.FacetGrid(kc_tax_zip, col='ZipCode', col_wrap=2)
g.map(hexbin, 'SqFtTotLiving', 'TaxAssessedValue',
 extent=[0, 3500, 0, 700000])
g.set_axis_labels('Finished Square Feet', 'Tax-Assessed Value')
g.set_titles('Zip code {col_name:.0f}')

Use the arguments col and row to specify the conditioning variables. For a single
conditioning variable, use col together with col_wrap to wrap the faceted graphs
into multiple rows.

The map method calls the hexbin function with subsets of the original data set for
the different zip codes. extent defines the limits of the x- and y-axes.

The concept of conditioning variables in a graphics system was pioneered with Trellis
graphics, developed by Rick Becker, Bill Cleveland, and others at Bell Labs [Trellis-
Graphics]. This idea has propagated to various modern graphics systems, such as the
lattice [lattice] and ggplot2 packages in R and the seaborn [seaborn] and Bokeh
[bokeh] modules in Python. Conditioning variables are also integral to business intel‐
ligence platforms such as Tableau and Spotfire. With the advent of vast computing
power, modern visualization platforms have moved well beyond the humble begin‐
nings of exploratory data analysis. However, key concepts and tools developed a half
century ago (e.g., simple boxplots) still form a foundation for these systems.

Key Ideas
• Hexagonal binning and contour plots are useful tools that permit graphical

examination of two numeric variables at a time, without being overwhelmed by
huge amounts of data.

• Contingency tables are the standard tool for looking at the counts of two catego‐
rical variables.

• Boxplots and violin plots allow you to plot a numeric variable against a categori‐
cal variable.

Exploring Two or More Variables | 45

Further Reading
• Modern Data Science with R by Benjamin Baumer, Daniel Kaplan, and Nicholas

Horton (Chapman & Hall/CRC Press, 2017) has an excellent presentation of “a
grammar for graphics” (the “gg” in ggplot).

• ggplot2: Elegant Graphics for Data Analysis by Hadley Wickham (Springer, 2009)
is an excellent resource from the creator of ggplot2.

• Josef Fruehwald has a web-based tutorial on ggplot2.

Summary
Exploratory data analysis (EDA), pioneered by John Tukey, set a foundation for the
field of data science. The key idea of EDA is that the first and most important step in
any project based on data is to look at the data. By summarizing and visualizing the
data, you can gain valuable intuition and understanding of the project.

This chapter has reviewed concepts ranging from simple metrics, such as estimates of
location and variability, to rich visual displays that explore the relationships between
multiple variables, as in Figure 1-12. The diverse set of tools and techniques being
developed by the open source community, combined with the expressiveness of the R
and Python languages, has created a plethora of ways to explore and analyze data.
Exploratory analysis should be a cornerstone of any data science project.

46 | Chapter 1: Exploratory Data Analysis

https://oreil.ly/zB2Dz

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Exploratory Data Analysis
	Elements of Structured Data
	Further Reading

	Rectangular Data
	Data Frames and Indexes
	Nonrectangular Data Structures
	Further Reading

	Estimates of Location
	Mean
	Median and Robust Estimates
	Example: Location Estimates of Population and Murder Rates
	Further Reading

	Estimates of Variability
	Standard Deviation and Related Estimates
	Estimates Based on Percentiles
	Example: Variability Estimates of State Population
	Further Reading

	Exploring the Data Distribution
	Percentiles and Boxplots
	Frequency Tables and Histograms
	Density Plots and Estimates
	Further Reading

	Exploring Binary and Categorical Data
	Mode
	Expected Value
	Probability
	Further Reading

	Correlation
	Scatterplots
	Further Reading

	Exploring Two or More Variables
	Hexagonal Binning and Contours (Plotting Numeric Versus Numeric Data)
	Two Categorical Variables
	Categorical and Numeric Data
	Visualizing Multiple Variables
	Further Reading

	Summary

	Chapter 2. Data and Sampling Distributions
	Random Sampling and Sample Bias
	Bias
	Random Selection
	Size Versus Quality: When Does Size Matter?
	Sample Mean Versus Population Mean
	Further Reading

	Selection Bias
	Regression to the Mean
	Further Reading

	Sampling Distribution of a Statistic
	Central Limit Theorem
	Standard Error
	Further Reading

	The Bootstrap
	Resampling Versus Bootstrapping
	Further Reading

	Confidence Intervals
	Further Reading

	Normal Distribution
	Standard Normal and QQ-Plots

	Long-Tailed Distributions
	Further Reading

	Student’s t-Distribution
	Further Reading

	Binomial Distribution
	Further Reading

	Chi-Square Distribution
	Further Reading

	F-Distribution
	Further Reading

	Poisson and Related Distributions
	Poisson Distributions
	Exponential Distribution
	Estimating the Failure Rate
	Weibull Distribution
	Further Reading

	Summary

	Chapter 3. Statistical Experiments and Significance Testing
	A/B Testing
	Why Have a Control Group?
	Why Just A/B? Why Not C, D,…?
	Further Reading

	Hypothesis Tests
	The Null Hypothesis
	Alternative Hypothesis
	One-Way Versus Two-Way Hypothesis Tests
	Further Reading

	Resampling
	Permutation Test
	Example: Web Stickiness
	Exhaustive and Bootstrap Permutation Tests
	Permutation Tests: The Bottom Line for Data Science
	Further Reading

	Statistical Significance and p-Values
	p-Value
	Alpha
	Type 1 and Type 2 Errors
	Data Science and p-Values
	Further Reading

	t-Tests
	Further Reading

	Multiple Testing
	Further Reading

	Degrees of Freedom
	Further Reading

	ANOVA
	F-Statistic
	Two-Way ANOVA
	Further Reading

	Chi-Square Test
	Chi-Square Test: A Resampling Approach
	Chi-Square Test: Statistical Theory
	Fisher’s Exact Test
	Relevance for Data Science
	Further Reading

	Multi-Arm Bandit Algorithm
	Further Reading

	Power and Sample Size
	Sample Size
	Further Reading

	Summary

	Chapter 4. Regression and Prediction
	Simple Linear Regression
	The Regression Equation
	Fitted Values and Residuals
	Least Squares
	Prediction Versus Explanation (Profiling)
	Further Reading

	Multiple Linear Regression
	Example: King County Housing Data
	Assessing the Model
	Cross-Validation
	Model Selection and Stepwise Regression
	Weighted Regression
	Further Reading

	Prediction Using Regression
	The Dangers of Extrapolation
	Confidence and Prediction Intervals

	Factor Variables in Regression
	Dummy Variables Representation
	Factor Variables with Many Levels
	Ordered Factor Variables

	Interpreting the Regression Equation
	Correlated Predictors
	Multicollinearity
	Confounding Variables
	Interactions and Main Effects

	Regression Diagnostics
	Outliers
	Influential Values
	Heteroskedasticity, Non-Normality, and Correlated Errors
	Partial Residual Plots and Nonlinearity

	Polynomial and Spline Regression
	Polynomial
	Splines
	Generalized Additive Models
	Further Reading

	Summary

	Chapter 5. Classification
	Naive Bayes
	Why Exact Bayesian Classification Is Impractical
	The Naive Solution
	Numeric Predictor Variables
	Further Reading

	Discriminant Analysis
	Covariance Matrix
	Fisher’s Linear Discriminant
	A Simple Example
	Further Reading

	Logistic Regression
	Logistic Response Function and Logit
	Logistic Regression and the GLM
	Generalized Linear Models
	Predicted Values from Logistic Regression
	Interpreting the Coefficients and Odds Ratios
	Linear and Logistic Regression: Similarities and Differences
	Assessing the Model
	Further Reading

	Evaluating Classification Models
	Confusion Matrix
	The Rare Class Problem
	Precision, Recall, and Specificity
	ROC Curve
	AUC
	Lift
	Further Reading

	Strategies for Imbalanced Data
	Undersampling
	Oversampling and Up/Down Weighting
	Data Generation
	Cost-Based Classification
	Exploring the Predictions
	Further Reading

	Summary

	Chapter 6. Statistical Machine Learning
	K-Nearest Neighbors
	A Small Example: Predicting Loan Default
	Distance Metrics
	One Hot Encoder
	Standardization (Normalization, z-Scores)
	Choosing K
	KNN as a Feature Engine

	Tree Models
	A Simple Example
	The Recursive Partitioning Algorithm
	Measuring Homogeneity or Impurity
	Stopping the Tree from Growing
	Predicting a Continuous Value
	How Trees Are Used
	Further Reading

	Bagging and the Random Forest
	Bagging
	Random Forest
	Variable Importance
	Hyperparameters

	Boosting
	The Boosting Algorithm
	XGBoost
	Regularization: Avoiding Overfitting
	Hyperparameters and Cross-Validation

	Summary

	Chapter 7. Unsupervised Learning
	Principal Components Analysis
	A Simple Example
	Computing the Principal Components
	Interpreting Principal Components
	Correspondence Analysis
	Further Reading

	K-Means Clustering
	A Simple Example
	K-Means Algorithm
	Interpreting the Clusters
	Selecting the Number of Clusters

	Hierarchical Clustering
	A Simple Example
	The Dendrogram
	The Agglomerative Algorithm
	Measures of Dissimilarity

	Model-Based Clustering
	Multivariate Normal Distribution
	Mixtures of Normals
	Selecting the Number of Clusters
	Further Reading

	Scaling and Categorical Variables
	Scaling the Variables
	Dominant Variables
	Categorical Data and Gower’s Distance
	Problems with Clustering Mixed Data

	Summary

	Bibliography
	Index
	About the Authors
	Colophon

