
9
Support Vector Machines

In this chapter, we discuss the support vector machine (SVM), an approach
for classification that was developed in the computer science community in
the 1990s and that has grown in popularity since then. SVMs have been
shown to perform well in a variety of settings, and are often considered one
of the best “out of the box” classifiers.

The support vector machine is a generalization of a simple and intu-
itive classifier called the maximal margin classifier, which we introduce in
Section 9.1. Though it is elegant and simple, we will see that this classifier
unfortunately cannot be applied to most data sets, since it requires that
the classes be separable by a linear boundary. In Section 9.2, we introduce
the support vector classifier, an extension of the maximal margin classifier
that can be applied in a broader range of cases. Section 9.3 introduces the
support vector machine, which is a further extension of the support vec-
tor classifier in order to accommodate non-linear class boundaries. Support
vector machines are intended for the binary classification setting in which
there are two classes; in Section 9.4 we discuss extensions of support vector
machines to the case of more than two classes. In Section 9.5 we discuss
the close connections between support vector machines and other statistical
methods such as logistic regression.

People often loosely refer to the maximal margin classifier, the support
vector classifier, and the support vector machine as “support vector
machines”. To avoid confusion, we will carefully distinguish between these
three notions in this chapter.

9.1 Maximal Margin Classifier
In this section, we define a hyperplane and introduce the concept of an
optimal separating hyperplane.

© Springer Nature Switzerland AG 2023
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-031-38747-0_9

367

https://doi.org/10.1007/978-3-031-38747-0_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38747-0_9&domain=pdf

368 9. Support Vector Machines

9.1.1 What Is a Hyperplane?
In a p-dimensional space, a hyperplane is a flat affine subspace of hyperplanedimension p − 1.1 For instance, in two dimensions, a hyperplane is a flat
one-dimensional subspace—in other words, a line. In three dimensions, a
hyperplane is a flat two-dimensional subspace—that is, a plane. In p > 3
dimensions, it can be hard to visualize a hyperplane, but the notion of a
(p− 1)-dimensional flat subspace still applies.

The mathematical definition of a hyperplane is quite simple. In two di-
mensions, a hyperplane is defined by the equation

β0 + β1X1 + β2X2 = 0 (9.1)

for parameters β0,β1, and β2. When we say that (9.1) “defines” the hyper-
plane, we mean that any X = (X1, X2)T for which (9.1) holds is a point
on the hyperplane. Note that (9.1) is simply the equation of a line, since
indeed in two dimensions a hyperplane is a line.

Equation 9.1 can be easily extended to the p-dimensional setting:

β0 + β1X1 + β2X2 + · · ·+ βpXp = 0 (9.2)

defines a p-dimensional hyperplane, again in the sense that if a point X =
(X1, X2, . . . , Xp)T in p-dimensional space (i.e. a vector of length p) satisfies
(9.2), then X lies on the hyperplane.

Now, suppose that X does not satisfy (9.2); rather,

β0 + β1X1 + β2X2 + · · ·+ βpXp > 0. (9.3)

Then this tells us that X lies to one side of the hyperplane. On the other
hand, if

β0 + β1X1 + β2X2 + · · ·+ βpXp < 0, (9.4)
then X lies on the other side of the hyperplane. So we can think of the
hyperplane as dividing p-dimensional space into two halves. One can easily
determine on which side of the hyperplane a point lies by simply calculating
the sign of the left-hand side of (9.2). A hyperplane in two-dimensional
space is shown in Figure 9.1.

9.1.2 Classification Using a Separating Hyperplane
Now suppose that we have an n × p data matrix X that consists of n
training observations in p-dimensional space,

x1 =




x11

...
x1p



 , . . . , xn =




xn1

...
xnp



 , (9.5)

and that these observations fall into two classes—that is, y1, . . . , yn ∈
{−1, 1} where −1 represents one class and 1 the other class. We also have a

1The word affine indicates that the subspace need not pass through the origin.

9.1 Maximal Margin Classifier 369

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1
.5

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

X1

X
2

FIGURE 9.1. The hyperplane 1 + 2X1 + 3X2 = 0 is shown. The blue region is
the set of points for which 1+ 2X1 +3X2 > 0, and the purple region is the set of
points for which 1 + 2X1 + 3X2 < 0.

test observation, a p-vector of observed features x∗ =
(
x∗
1 . . . x∗

p

)T . Our
goal is to develop a classifier based on the training data that will correctly
classify the test observation using its feature measurements. We have seen
a number of approaches for this task, such as linear discriminant analysis
and logistic regression in Chapter 4, and classification trees, bagging, and
boosting in Chapter 8. We will now see a new approach that is based upon
the concept of a separating hyperplane. separating

hyperplaneSuppose that it is possible to construct a hyperplane that separates the
training observations perfectly according to their class labels. Examples
of three such separating hyperplanes are shown in the left-hand panel of
Figure 9.2. We can label the observations from the blue class as yi = 1 and
those from the purple class as yi = −1. Then a separating hyperplane has
the property that

β0 + β1xi1 + β2xi2 + · · ·+ βpxip > 0 if yi = 1, (9.6)

and
β0 + β1xi1 + β2xi2 + · · ·+ βpxip < 0 if yi = −1. (9.7)

Equivalently, a separating hyperplane has the property that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) > 0 (9.8)

for all i = 1, . . . , n.
If a separating hyperplane exists, we can use it to construct a very natural

classifier: a test observation is assigned a class depending on which side of
the hyperplane it is located. The right-hand panel of Figure 9.2 shows
an example of such a classifier. That is, we classify the test observation x∗

based on the sign of f(x∗) = β0+β1x∗
1+β2x∗

2+· · ·+βpx∗
p. If f(x∗) is positive,

then we assign the test observation to class 1, and if f(x∗) is negative, then
we assign it to class −1. We can also make use of the magnitude of f(x∗). If

370 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.2. Left: There are two classes of observations, shown in blue and
in purple, each of which has measurements on two variables. Three separating
hyperplanes, out of many possible, are shown in black. Right: A separating hy-
perplane is shown in black. The blue and purple grid indicates the decision rule
made by a classifier based on this separating hyperplane: a test observation that
falls in the blue portion of the grid will be assigned to the blue class, and a test
observation that falls into the purple portion of the grid will be assigned to the
purple class.

f(x∗) is far from zero, then this means that x∗ lies far from the hyperplane,
and so we can be confident about our class assignment for x∗. On the other
hand, if f(x∗) is close to zero, then x∗ is located near the hyperplane, and so
we are less certain about the class assignment for x∗. Not surprisingly, and
as we see in Figure 9.2, a classifier that is based on a separating hyperplane
leads to a linear decision boundary.

9.1.3 The Maximal Margin Classifier
In general, if our data can be perfectly separated using a hyperplane, then
there will in fact exist an infinite number of such hyperplanes. This is
because a given separating hyperplane can usually be shifted a tiny bit up or
down, or rotated, without coming into contact with any of the observations.
Three possible separating hyperplanes are shown in the left-hand panel
of Figure 9.2. In order to construct a classifier based upon a separating
hyperplane, we must have a reasonable way to decide which of the infinite
possible separating hyperplanes to use.

A natural choice is the maximal margin hyperplane (also known as the maximal
margin
hyperplane

optimal separating hyperplane), which is the separating hyperplane that

optimal
separating
hyperplane

is farthest from the training observations. That is, we can compute the
(perpendicular) distance from each training observation to a given separat-
ing hyperplane; the smallest such distance is the minimal distance from the
observations to the hyperplane, and is known as the margin. The maximal

marginmargin hyperplane is the separating hyperplane for which the margin is
largest—that is, it is the hyperplane that has the farthest minimum dis-
tance to the training observations. We can then classify a test observation
based on which side of the maximal margin hyperplane it lies. This is known

9.1 Maximal Margin Classifier 371

−1 0 1 2 3

−1
0

1
2

3

X1

X
2

FIGURE 9.3. There are two classes of observations, shown in blue and in
purple. The maximal margin hyperplane is shown as a solid line. The margin
is the distance from the solid line to either of the dashed lines. The two blue
points and the purple point that lie on the dashed lines are the support vectors,
and the distance from those points to the hyperplane is indicated by arrows. The
purple and blue grid indicates the decision rule made by a classifier based on this
separating hyperplane.

as the maximal margin classifier. We hope that a classifier that has a large maximal
margin
classifier

margin on the training data will also have a large margin on the test data,
and hence will classify the test observations correctly. Although the maxi-
mal margin classifier is often successful, it can also lead to overfitting when
p is large.

If β0,β1, . . . ,βp are the coefficients of the maximal margin hyperplane,
then the maximal margin classifier classifies the test observation x∗ based
on the sign of f(x∗) = β0 + β1x∗

1 + β2x∗
2 + · · ·+ βpx∗

p.
Figure 9.3 shows the maximal margin hyperplane on the data set of

Figure 9.2. Comparing the right-hand panel of Figure 9.2 to Figure 9.3,
we see that the maximal margin hyperplane shown in Figure 9.3 does in-
deed result in a greater minimal distance between the observations and the
separating hyperplane—that is, a larger margin. In a sense, the maximal
margin hyperplane represents the mid-line of the widest “slab” that we can
insert between the two classes.

Examining Figure 9.3, we see that three training observations are equidis-
tant from the maximal margin hyperplane and lie along the dashed lines
indicating the width of the margin. These three observations are known as
support vectors, since they are vectors in p-dimensional space (in Figure 9.3, support

vectorp = 2) and they “support” the maximal margin hyperplane in the sense
that if these points were moved slightly then the maximal margin hyper-
plane would move as well. Interestingly, the maximal margin hyperplane
depends directly on the support vectors, but not on the other observations:
a movement to any of the other observations would not affect the separating
hyperplane, provided that the observation’s movement does not cause it to

372 9. Support Vector Machines

cross the boundary set by the margin. The fact that the maximal margin
hyperplane depends directly on only a small subset of the observations is
an important property that will arise later in this chapter when we discuss
the support vector classifier and support vector machines.

9.1.4 Construction of the Maximal Margin Classifier
We now consider the task of constructing the maximal margin hyperplane
based on a set of n training observations x1, . . . , xn ∈ Rp and associated
class labels y1, . . . , yn ∈ {−1, 1}. Briefly, the maximal margin hyperplane
is the solution to the optimization problem

maximize
β0,β1,...,βp,M

M (9.9)

subject to
p∑

j=1

β2
j = 1, (9.10)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n. (9.11)

This optimization problem (9.9)–(9.11) is actually simpler than it looks.
First of all, the constraint in (9.11) that

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M ∀ i = 1, . . . , n

guarantees that each observation will be on the correct side of the hyper-
plane, provided that M is positive. (Actually, for each observation to be
on the correct side of the hyperplane we would simply need yi(β0+β1xi1+
β2xi2+· · ·+βpxip) > 0, so the constraint in (9.11) in fact requires that each
observation be on the correct side of the hyperplane, with some cushion,
provided that M is positive.)

Second, note that (9.10) is not really a constraint on the hyperplane, since
if β0 + β1xi1 + β2xi2 + · · · + βpxip = 0 defines a hyperplane, then so does
k(β0+β1xi1+β2xi2+ · · ·+βpxip) = 0 for any k &= 0. However, (9.10) adds
meaning to (9.11); one can show that with this constraint the perpendicular
distance from the ith observation to the hyperplane is given by

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip).

Therefore, the constraints (9.10) and (9.11) ensure that each observation
is on the correct side of the hyperplane and at least a distance M from the
hyperplane. Hence, M represents the margin of our hyperplane, and the
optimization problem chooses β0,β1, . . . ,βp to maximize M . This is exactly
the definition of the maximal margin hyperplane! The problem (9.9)–(9.11)
can be solved efficiently, but details of this optimization are outside of the
scope of this book.

9.1.5 The Non-separable Case
The maximal margin classifier is a very natural way to perform classifi-
cation, if a separating hyperplane exists. However, as we have hinted, in
many cases no separating hyperplane exists, and so there is no maximal

9.2 Support Vector Classifiers 373

0 1 2 3

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

X1

X
2

FIGURE 9.4. There are two classes of observations, shown in blue and in
purple. In this case, the two classes are not separable by a hyperplane, and so the
maximal margin classifier cannot be used.

margin classifier. In this case, the optimization problem (9.9)–(9.11) has no
solution with M > 0. An example is shown in Figure 9.4. In this case, we
cannot exactly separate the two classes. However, as we will see in the next
section, we can extend the concept of a separating hyperplane in order to
develop a hyperplane that almost separates the classes, using a so-called
soft margin. The generalization of the maximal margin classifier to the
non-separable case is known as the support vector classifier.

9.2 Support Vector Classifiers
9.2.1 Overview of the Support Vector Classifier
In Figure 9.4, we see that observations that belong to two classes are not
necessarily separable by a hyperplane. In fact, even if a separating hyper-
plane does exist, then there are instances in which a classifier based on
a separating hyperplane might not be desirable. A classifier based on a
separating hyperplane will necessarily perfectly classify all of the training
observations; this can lead to sensitivity to individual observations. An ex-
ample is shown in Figure 9.5. The addition of a single observation in the
right-hand panel of Figure 9.5 leads to a dramatic change in the maxi-
mal margin hyperplane. The resulting maximal margin hyperplane is not
satisfactory—for one thing, it has only a tiny margin. This is problematic
because as discussed previously, the distance of an observation from the
hyperplane can be seen as a measure of our confidence that the obser-
vation was correctly classified. Moreover, the fact that the maximal mar-
gin hyperplane is extremely sensitive to a change in a single observation
suggests that it may have overfit the training data.

In this case, we might be willing to consider a classifier based on a hy-
perplane that does not perfectly separate the two classes, in the interest of

374 9. Support Vector Machines

−1 0 1 2 3

−1
0

1
2

3

−1 0 1 2 3

−1
0

1
2

3

X1X1

X
2

X
2

FIGURE 9.5. Left: Two classes of observations are shown in blue and in
purple, along with the maximal margin hyperplane. Right: An additional blue
observation has been added, leading to a dramatic shift in the maximal margin
hyperplane shown as a solid line. The dashed line indicates the maximal margin
hyperplane that was obtained in the absence of this additional point.

• Greater robustness to individual observations, and

• Better classification of most of the training observations.

That is, it could be worthwhile to misclassify a few training observations
in order to do a better job in classifying the remaining observations.

The support vector classifier, sometimes called a soft margin classifier, support
vector
classifier
soft margin
classifier

does exactly this. Rather than seeking the largest possible margin so that
every observation is not only on the correct side of the hyperplane but
also on the correct side of the margin, we instead allow some observations
to be on the incorrect side of the margin, or even the incorrect side of
the hyperplane. (The margin is soft because it can be violated by some
of the training observations.) An example is shown in the left-hand panel
of Figure 9.6. Most of the observations are on the correct side of the margin.
However, a small subset of the observations are on the wrong side of the
margin.

An observation can be not only on the wrong side of the margin, but also
on the wrong side of the hyperplane. In fact, when there is no separating
hyperplane, such a situation is inevitable. Observations on the wrong side of
the hyperplane correspond to training observations that are misclassified by
the support vector classifier. The right-hand panel of Figure 9.6 illustrates
such a scenario.

9.2.2 Details of the Support Vector Classifier
The support vector classifier classifies a test observation depending on
which side of a hyperplane it lies. The hyperplane is chosen to correctly
separate most of the training observations into the two classes, but may

9.2 Support Vector Classifiers 375

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

−0.5 0.0 0.5 1.0 1.5 2.0 2.5

−1
0

1
2

3
4

1

2

3

4 5

6

7

8
9

10

11

12

X1X1

X
2

X
2

FIGURE 9.6. Left: A support vector classifier was fit to a small data set. The
hyperplane is shown as a solid line and the margins are shown as dashed lines.
Purple observations: Observations 3, 4, 5, and 6 are on the correct side of the
margin, observation 2 is on the margin, and observation 1 is on the wrong side of
the margin. Blue observations: Observations 7 and 10 are on the correct side of
the margin, observation 9 is on the margin, and observation 8 is on the wrong side
of the margin. No observations are on the wrong side of the hyperplane. Right:
Same as left panel with two additional points, 11 and 12. These two observations
are on the wrong side of the hyperplane and the wrong side of the margin.

misclassify a few observations. It is the solution to the optimization problem

maximize
β0,β1,...,βp,ε1,...,εn,M

M (9.12)

subject to
p∑

j=1

β2
j = 1, (9.13)

yi(β0 + β1xi1 + β2xi2 + · · ·+ βpxip) ≥M(1− εi), (9.14)

εi ≥ 0,
n∑

i=1

εi ≤ C, (9.15)

where C is a nonnegative tuning parameter. As in (9.11), M is the width
of the margin; we seek to make this quantity as large as possible. In (9.14),
ε1, . . . , εn are slack variables that allow individual observations to be on slack

variablethe wrong side of the margin or the hyperplane; we will explain them in
greater detail momentarily. Once we have solved (9.12)–(9.15), we classify
a test observation x∗ as before, by simply determining on which side of the
hyperplane it lies. That is, we classify the test observation based on the
sign of f(x∗) = β0 + β1x∗

1 + · · ·+ βpx∗
p.

The problem (9.12)–(9.15) seems complex, but insight into its behavior
can be made through a series of simple observations presented below. First
of all, the slack variable εi tells us where the ith observation is located,
relative to the hyperplane and relative to the margin. If εi = 0 then the ith
observation is on the correct side of the margin, as we saw in Section 9.1.4.
If εi > 0 then the ith observation is on the wrong side of the margin, and
we say that the ith observation has violated the margin. If εi > 1 then it is
on the wrong side of the hyperplane.

376 9. Support Vector Machines

We now consider the role of the tuning parameter C. In (9.15), C bounds
the sum of the εi’s, and so it determines the number and severity of the vio-
lations to the margin (and to the hyperplane) that we will tolerate. We can
think of C as a budget for the amount that the margin can be violated
by the n observations. If C = 0 then there is no budget for violations to
the margin, and it must be the case that ε1 = · · · = εn = 0, in which case
(9.12)–(9.15) simply amounts to the maximal margin hyperplane optimiza-
tion problem (9.9)–(9.11). (Of course, a maximal margin hyperplane exists
only if the two classes are separable.) For C > 0 no more than C observa-
tions can be on the wrong side of the hyperplane, because if an observation
is on the wrong side of the hyperplane then εi > 1, and (9.15) requires
that

∑n
i=1 εi ≤ C. As the budget C increases, we become more tolerant of

violations to the margin, and so the margin will widen. Conversely, as C
decreases, we become less tolerant of violations to the margin and so the
margin narrows. An example is shown in Figure 9.7.

In practice, C is treated as a tuning parameter that is generally chosen via
cross-validation. As with the tuning parameters that we have seen through-
out this book, C controls the bias-variance trade-off of the statistical learn-
ing technique. When C is small, we seek narrow margins that are rarely
violated; this amounts to a classifier that is highly fit to the data, which
may have low bias but high variance. On the other hand, when C is larger,
the margin is wider and we allow more violations to it; this amounts to
fitting the data less hard and obtaining a classifier that is potentially more
biased but may have lower variance.

The optimization problem (9.12)–(9.15) has a very interesting property:
it turns out that only observations that either lie on the margin or that
violate the margin will affect the hyperplane, and hence the classifier ob-
tained. In other words, an observation that lies strictly on the correct side
of the margin does not affect the support vector classifier! Changing the
position of that observation would not change the classifier at all, provided
that its position remains on the correct side of the margin. Observations
that lie directly on the margin, or on the wrong side of the margin for
their class, are known as support vectors. These observations do affect the
support vector classifier.

The fact that only support vectors affect the classifier is in line with our
previous assertion that C controls the bias-variance trade-off of the support
vector classifier. When the tuning parameter C is large, then the margin is
wide, many observations violate the margin, and so there are many support
vectors. In this case, many observations are involved in determining the
hyperplane. The top left panel in Figure 9.7 illustrates this setting: this
classifier has low variance (since many observations are support vectors)
but potentially high bias. In contrast, if C is small, then there will be fewer
support vectors and hence the resulting classifier will have low bias but
high variance. The bottom right panel in Figure 9.7 illustrates this setting,
with only eight support vectors.

The fact that the support vector classifier’s decision rule is based only
on a potentially small subset of the training observations (the support vec-
tors) means that it is quite robust to the behavior of observations that
are far away from the hyperplane. This property is distinct from some of

9.3 Support Vector Machines 377

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

−1 0 1 2

−3
−2

−1
0

1
2

3

X1X1

X1X1

X
2

X
2

X
2

X
2

FIGURE 9.7. A support vector classifier was fit using four different values
of the tuning parameter C in (9.12)–(9.15). The largest value of C was used
in the top left panel, and smaller values were used in the top right, bottom left,
and bottom right panels. When C is large, then there is a high tolerance for
observations being on the wrong side of the margin, and so the margin will be
large. As C decreases, the tolerance for observations being on the wrong side of
the margin decreases, and the margin narrows.

the other classification methods that we have seen in preceding chapters,
such as linear discriminant analysis. Recall that the LDA classification rule
depends on the mean of all of the observations within each class, as well as
the within-class covariance matrix computed using all of the observations.
In contrast, logistic regression, unlike LDA, has very low sensitivity to ob-
servations far from the decision boundary. In fact we will see in Section 9.5
that the support vector classifier and logistic regression are closely related.

9.3 Support Vector Machines
We first discuss a general mechanism for converting a linear classifier into
one that produces non-linear decision boundaries. We then introduce the
support vector machine, which does this in an automatic way.

378 9. Support Vector Machines

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

X1X1

X
2

X
2

FIGURE 9.8. Left: The observations fall into two classes, with a non-lin-
ear boundary between them. Right: The support vector classifier seeks a linear
boundary, and consequently performs very poorly.

9.3.1 Classification with Non-Linear Decision Boundaries
The support vector classifier is a natural approach for classification in the
two-class setting, if the boundary between the two classes is linear. How-
ever, in practice we are sometimes faced with non-linear class boundaries.
For instance, consider the data in the left-hand panel of Figure 9.8. It is
clear that a support vector classifier or any linear classifier will perform
poorly here. Indeed, the support vector classifier shown in the right-hand
panel of Figure 9.8 is useless here.

In Chapter 7, we are faced with an analogous situation. We see there
that the performance of linear regression can suffer when there is a non-
linear relationship between the predictors and the outcome. In that case,
we consider enlarging the feature space using functions of the predictors,
such as quadratic and cubic terms, in order to address this non-linearity.
In the case of the support vector classifier, we could address the prob-
lem of possibly non-linear boundaries between classes in a similar way, by
enlarging the feature space using quadratic, cubic, and even higher-order
polynomial functions of the predictors. For instance, rather than fitting a
support vector classifier using p features

X1, X2, . . . , Xp,

we could instead fit a support vector classifier using 2p features

X1, X
2
1 , X2, X

2
2 , . . . , Xp, X

2
p .

9.3 Support Vector Machines 379

Then (9.12)–(9.15) would become

maximize
β0,β11,β12,...,βp1,βp2,ε1,...,εn,M

M (9.16)

subject to yi



β0 +
p∑

j=1

βj1xij +
p∑

j=1

βj2x
2
ij



 ≥M(1− εi),

n∑

i=1

εi ≤ C, εi ≥ 0,
p∑

j=1

2∑

k=1

β2
jk = 1.

Why does this lead to a non-linear decision boundary? In the enlarged
feature space, the decision boundary that results from (9.16) is in fact lin-
ear. But in the original feature space, the decision boundary is of the form
q(x) = 0, where q is a quadratic polynomial, and its solutions are gener-
ally non-linear. One might additionally want to enlarge the feature space
with higher-order polynomial terms, or with interaction terms of the form
XjXj′ for j &= j′. Alternatively, other functions of the predictors could
be considered rather than polynomials. It is not hard to see that there
are many possible ways to enlarge the feature space, and that unless we
are careful, we could end up with a huge number of features. Then compu-
tations would become unmanageable. The support vector machine, which
we present next, allows us to enlarge the feature space used by the support
vector classifier in a way that leads to efficient computations.

9.3.2 The Support Vector Machine
The support vector machine (SVM) is an extension of the support vector support

vector
machine

classifier that results from enlarging the feature space in a specific way,
using kernels. We will now discuss this extension, the details of which are

kernelsomewhat complex and beyond the scope of this book. However, the main
idea is described in Section 9.3.1: we may want to enlarge our feature space
in order to accommodate a non-linear boundary between the classes. The
kernel approach that we describe here is simply an efficient computational
approach for enacting this idea.

We have not discussed exactly how the support vector classifier is com-
puted because the details become somewhat technical. However, it turns
out that the solution to the support vector classifier problem (9.12)–(9.15)
involves only the inner products of the observations (as opposed to the
observations themselves). The inner product of two r-vectors a and b is
defined as 〈a, b〉 =

∑r
i=1 aibi. Thus the inner product of two observations

xi, xi′ is given by

〈xi, xi′〉 =
p∑

j=1

xijxi′j . (9.17)

It can be shown that
• The linear support vector classifier can be represented as

f(x) = β0 +
n∑

i=1

αi〈x, xi〉, (9.18)

380 9. Support Vector Machines

where there are n parameters αi, i = 1, . . . , n, one per training
observation.

• To estimate the parameters α1, . . . ,αn and β0, all we need are the(n
2

)
inner products 〈xi, xi′〉 between all pairs of training observations.

(The notation
(n
2

)
means n(n − 1)/2, and gives the number of pairs

among a set of n items.)

Notice that in (9.18), in order to evaluate the function f(x), we need to
compute the inner product between the new point x and each of the training
points xi. However, it turns out that αi is nonzero only for the support
vectors in the solution—that is, if a training observation is not a support
vector, then its αi equals zero. So if S is the collection of indices of these
support points, we can rewrite any solution function of the form (9.18) as

f(x) = β0 +
∑

i∈S
αi〈x, xi〉, (9.19)

which typically involves far fewer terms than in (9.18).2
To summarize, in representing the linear classifier f(x), and in computing

its coefficients, all we need are inner products.
Now suppose that every time the inner product (9.17) appears in the

representation (9.18), or in a calculation of the solution for the support
vector classifier, we replace it with a generalization of the inner product of
the form

K(xi, xi′), (9.20)
where K is some function that we will refer to as a kernel. A kernel is a kernelfunction that quantifies the similarity of two observations. For instance, we
could simply take

K(xi, xi′) =
p∑

j=1

xijxi′j , (9.21)

which would just give us back the support vector classifier. Equation 9.21
is known as a linear kernel because the support vector classifier is linear
in the features; the linear kernel essentially quantifies the similarity of a
pair of observations using Pearson (standard) correlation. But one could
instead choose another form for (9.20). For instance, one could replace
every instance of

∑p
j=1 xijxi′j with the quantity

K(xi, xi′) = (1 +
p∑

j=1

xijxi′j)
d. (9.22)

This is known as a polynomial kernel of degree d, where d is a positive polynomial
kernelinteger. Using such a kernel with d > 1, instead of the standard linear

kernel (9.21), in the support vector classifier algorithm leads to a much more
flexible decision boundary. It essentially amounts to fitting a support vector

2By expanding each of the inner products in (9.19), it is easy to see that f(x) is
a linear function of the coordinates of x. Doing so also establishes the correspondence
between the αi and the original parameters βj .

9.3 Support Vector Machines 381

−4 −2 0 2 4

−4
−2

0
2

4

−4 −2 0 2 4

−4
−2

0
2

4

X1X1

X
2

X
2

FIGURE 9.9. Left: An SVM with a polynomial kernel of degree 3 is applied to
the non-linear data from Figure 9.8, resulting in a far more appropriate decision
rule. Right: An SVM with a radial kernel is applied. In this example, either kernel
is capable of capturing the decision boundary.

classifier in a higher-dimensional space involving polynomials of degree d,
rather than in the original feature space. When the support vector classifier
is combined with a non-linear kernel such as (9.22), the resulting classifier is
known as a support vector machine. Note that in this case the (non-linear)
function has the form

f(x) = β0 +
∑

i∈S
αiK(x, xi). (9.23)

The left-hand panel of Figure 9.9 shows an example of an SVM with a
polynomial kernel applied to the non-linear data from Figure 9.8. The fit is
a substantial improvement over the linear support vector classifier. When
d = 1, then the SVM reduces to the support vector classifier seen earlier in
this chapter.

The polynomial kernel shown in (9.22) is one example of a possible
non-linear kernel, but alternatives abound. Another popular choice is the
radial kernel, which takes the form radial kernel

K(xi, xi′) = exp(−γ
p∑

j=1

(xij − xi′j)
2). (9.24)

In (9.24), γ is a positive constant. The right-hand panel of Figure 9.9 shows
an example of an SVM with a radial kernel on this non-linear data; it also
does a good job in separating the two classes.

How does the radial kernel (9.24) actually work? If a given test obser-
vation x∗ = (x∗

1, . . . , x
∗
p)

T is far from a training observation xi in terms of
Euclidean distance, then

∑p
j=1(x

∗
j −xij)2 will be large, and so K(x∗, xi) =

exp(−γ
∑p

j=1(x
∗
j − xij)2) will be tiny. This means that in (9.23), xi will

play virtually no role in f(x∗). Recall that the predicted class label for the
test observation x∗ is based on the sign of f(x∗). In other words, training
observations that are far from x∗ will play essentially no role in the pre-
dicted class label for x∗. This means that the radial kernel has very local

382 9. Support Vector Machines

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support Vector Classifier
LDA

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support Vector Classifier
SVM: γ=10−3

SVM: γ=10−2

SVM: γ=10−1

FIGURE 9.10. ROC curves for the Heart data training set. Left: The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using a radial basis kernel with γ = 10−3, 10−2, and 10−1.

behavior, in the sense that only nearby training observations have an effect
on the class label of a test observation.

What is the advantage of using a kernel rather than simply enlarging
the feature space using functions of the original features, as in (9.16)? One
advantage is computational, and it amounts to the fact that using kernels,
one need only compute K(xi, x′

i) for all
(n
2

)
distinct pairs i, i′. This can be

done without explicitly working in the enlarged feature space. This is im-
portant because in many applications of SVMs, the enlarged feature space
is so large that computations are intractable. For some kernels, such as the
radial kernel (9.24), the feature space is implicit and infinite-dimensional,
so we could never do the computations there anyway!

9.3.3 An Application to the Heart Disease Data
In Chapter 8 we apply decision trees and related methods to the Heart data.
The aim is to use 13 predictors such as Age, Sex, and Chol in order to predict
whether an individual has heart disease. We now investigate how an SVM
compares to LDA on this data. After removing 6 missing observations, the
data consist of 297 subjects, which we randomly split into 207 training and
90 test observations.

We first fit LDA and the support vector classifier to the training data.
Note that the support vector classifier is equivalent to an SVM using a poly-
nomial kernel of degree d = 1. The left-hand panel of Figure 9.10 displays
ROC curves (described in Section 4.4.2) for the training set predictions for
both LDA and the support vector classifier. Both classifiers compute scores
of the form f̂(X) = β̂0 + β̂1X1 + β̂2X2 + · · · + β̂pXp for each observation.
For any given cutoff t, we classify observations into the heart disease or
no heart disease categories depending on whether f̂(X) < t or f̂(X) ≥ t.
The ROC curve is obtained by forming these predictions and computing
the false positive and true positive rates for a range of values of t. An opti-
mal classifier will hug the top left corner of the ROC plot. In this instance

9.4 SVMs with More than Two Classes 383

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support Vector Classifier
LDA

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Support Vector Classifier
SVM: γ=10−3

SVM: γ=10−2

SVM: γ=10−1

FIGURE 9.11. ROC curves for the test set of the Heart data. Left: The support
vector classifier and LDA are compared. Right: The support vector classifier is
compared to an SVM using a radial basis kernel with γ = 10−3, 10−2, and 10−1.

LDA and the support vector classifier both perform well, though there is a
suggestion that the support vector classifier may be slightly superior.

The right-hand panel of Figure 9.10 displays ROC curves for SVMs using
a radial kernel, with various values of γ. As γ increases and the fit becomes
more non-linear, the ROC curves improve. Using γ = 10−1 appears to give
an almost perfect ROC curve. However, these curves represent training
error rates, which can be misleading in terms of performance on new test
data. Figure 9.11 displays ROC curves computed on the 90 test observa-
tions. We observe some differences from the training ROC curves. In the
left-hand panel of Figure 9.11, the support vector classifier appears to have
a small advantage over LDA (although these differences are not statisti-
cally significant). In the right-hand panel, the SVM using γ = 10−1, which
showed the best results on the training data, produces the worst estimates
on the test data. This is once again evidence that while a more flexible
method will often produce lower training error rates, this does not neces-
sarily lead to improved performance on test data. The SVMs with γ = 10−2

and γ = 10−3 perform comparably to the support vector classifier, and all
three outperform the SVM with γ = 10−1.

9.4 SVMs with More than Two Classes
So far, our discussion has been limited to the case of binary classification:
that is, classification in the two-class setting. How can we extend SVMs
to the more general case where we have some arbitrary number of classes?
It turns out that the concept of separating hyperplanes upon which SVMs
are based does not lend itself naturally to more than two classes. Though
a number of proposals for extending SVMs to the K-class case have been
made, the two most popular are the one-versus-one and one-versus-all
approaches. We briefly discuss those two approaches here.

384 9. Support Vector Machines

9.4.1 One-Versus-One Classification
Suppose that we would like to perform classification using SVMs, and there
are K > 2 classes. A one-versus-one or all-pairs approach constructs

(K
2

)
one-versus-
oneSVMs, each of which compares a pair of classes. For example, one such

SVM might compare the kth class, coded as +1, to the k′th class, coded
as −1. We classify a test observation using each of the

(K
2

)
classifiers, and

we tally the number of times that the test observation is assigned to each
of the K classes. The final classification is performed by assigning the test
observation to the class to which it was most frequently assigned in these(K
2

)
pairwise classifications.

9.4.2 One-Versus-All Classification
The one-versus-all approach (also referred to as one-versus-rest) is an al- one-versus-

all
one-versus-
rest

ternative procedure for applying SVMs in the case of K > 2 classes. We
fit K SVMs, each time comparing one of the K classes to the remaining
K − 1 classes. Let β0k,β1k, . . . ,βpk denote the parameters that result from
fitting an SVM comparing the kth class (coded as +1) to the others (coded
as −1). Let x∗ denote a test observation. We assign the observation to the
class for which β0k+β1kx∗

1+β2kx∗
2+ · · ·+βpkx∗

p is largest, as this amounts
to a high level of confidence that the test observation belongs to the kth
class rather than to any of the other classes.

9.5 Relationship to Logistic Regression
When SVMs were first introduced in the mid-1990s, they made quite a
splash in the statistical and machine learning communities. This was due
in part to their good performance, good marketing, and also to the fact
that the underlying approach seemed both novel and mysterious. The idea
of finding a hyperplane that separates the data as well as possible, while al-
lowing some violations to this separation, seemed distinctly different from
classical approaches for classification, such as logistic regression and lin-
ear discriminant analysis. Moreover, the idea of using a kernel to expand
the feature space in order to accommodate non-linear class boundaries ap-
peared to be a unique and valuable characteristic.

However, since that time, deep connections between SVMs and other
more classical statistical methods have emerged. It turns out that one can
rewrite the criterion (9.12)–(9.15) for fitting the support vector classifier
f(X) = β0 + β1X1 + · · ·+ βpXp as

minimize
β0,β1,...,βp






n∑

i=1

max [0, 1− yif(xi)] + λ
p∑

j=1

β2
j




 , (9.25)

where λ is a nonnegative tuning parameter. When λ is large then β1, . . . ,βp

are small, more violations to the margin are tolerated, and a low-variance
but high-bias classifier will result. When λ is small then few violations
to the margin will occur; this amounts to a high-variance but low-bias

9.5 Relationship to Logistic Regression 385

classifier. Thus, a small value of λ in (9.25) amounts to a small value of C
in (9.15). Note that the λ

∑p
j=1 β

2
j term in (9.25) is the ridge penalty term

from Section 6.2.1, and plays a similar role in controlling the bias-variance
trade-off for the support vector classifier.

Now (9.25) takes the “Loss + Penalty” form that we have seen repeatedly
throughout this book:

minimize
β0,β1,...,βp

{L(X,y,β) + λP (β)} . (9.26)

In (9.26), L(X,y,β) is some loss function quantifying the extent to which
the model, parametrized by β, fits the data (X,y), and P (β) is a penalty
function on the parameter vector β whose effect is controlled by a nonneg-
ative tuning parameter λ. For instance, ridge regression and the lasso both
take this form with

L(X,y,β) =
n∑

i=1



yi − β0 −
p∑

j=1

xijβj




2

and with P (β) =
∑p

j=1 β
2
j for ridge regression and P (β) =

∑p
j=1 |βj | for

the lasso. In the case of (9.25) the loss function instead takes the form

L(X,y,β) =
n∑

i=1

max [0, 1− yi(β0 + β1xi1 + · · ·+ βpxip)] .

This is known as hinge loss, and is depicted in Figure 9.12. However, it hinge lossturns out that the hinge loss function is closely related to the loss function
used in logistic regression, also shown in Figure 9.12.

An interesting characteristic of the support vector classifier is that only
support vectors play a role in the classifier obtained; observations on the
correct side of the margin do not affect it. This is due to the fact that the
loss function shown in Figure 9.12 is exactly zero for observations for which
yi(β0 + β1xi1 + · · ·+ βpxip) ≥ 1; these correspond to observations that are
on the correct side of the margin.3 In contrast, the loss function for logistic
regression shown in Figure 9.12 is not exactly zero anywhere. But it is very
small for observations that are far from the decision boundary. Due to the
similarities between their loss functions, logistic regression and the support
vector classifier often give very similar results. When the classes are well
separated, SVMs tend to behave better than logistic regression; in more
overlapping regimes, logistic regression is often preferred.

When the support vector classifier and SVM were first introduced, it was
thought that the tuning parameter C in (9.15) was an unimportant “nui-
sance” parameter that could be set to some default value, like 1. However,
the “Loss + Penalty” formulation (9.25) for the support vector classifier
indicates that this is not the case. The choice of tuning parameter is very
important and determines the extent to which the model underfits or over-
fits the data, as illustrated, for example, in Figure 9.7.

3With this hinge-loss + penalty representation, the margin corresponds to the value
one, and the width of the margin is determined by

∑
β2
j .

386 9. Support Vector Machines

−6 −4 −2 0 2

0
2

4
6

8

Lo
ss

SVM Loss
Logistic Regression Loss

yi(β0 + β1xi1 + . . . + βpxip)

FIGURE 9.12. The SVM and logistic regression loss functions are compared,
as a function of yi(β0 +β1xi1 + · · ·+βpxip). When yi(β0 +β1xi1 + · · ·+βpxip) is
greater than 1, then the SVM loss is zero, since this corresponds to an observation
that is on the correct side of the margin. Overall, the two loss functions have quite
similar behavior.

We have established that the support vector classifier is closely related
to logistic regression and other preexisting statistical methods. Is the SVM
unique in its use of kernels to enlarge the feature space to accommodate
non-linear class boundaries? The answer to this question is “no”. We could
just as well perform logistic regression or many of the other classification
methods seen in this book using non-linear kernels; this is closely related
to some of the non-linear approaches seen in Chapter 7. However, for his-
torical reasons, the use of non-linear kernels is much more widespread in
the context of SVMs than in the context of logistic regression or other
methods.

Though we have not addressed it here, there is in fact an extension
of the SVM for regression (i.e. for a quantitative rather than a qualita-
tive response), called support vector regression. In Chapter 3, we saw that support

vector
regression

least squares regression seeks coefficients β0,β1, . . . ,βp such that the sum
of squared residuals is as small as possible. (Recall from Chapter 3 that
residuals are defined as yi − β0 − β1xi1 − · · · − βpxip.) Support vector
regression instead seeks coefficients that minimize a different type of loss,
where only residuals larger in absolute value than some positive constant
contribute to the loss function. This is an extension of the margin used in
support vector classifiers to the regression setting.

9.6 Lab: Support Vector Machines 387

9.6 Lab: Support Vector Machines
In this lab, we use the sklearn.svm library to demonstrate the support
vector classifier and the support vector machine.

We import some of our usual libraries.
In [1]: import numpy as np

from matplotlib.pyplot import subplots, cm
import sklearn.model_selection as skm
from ISLP import load_data, confusion_table

We also collect the new imports needed for this lab.
In [2]: from sklearn.svm import SVC

from ISLP.svm import plot as plot_svm
from sklearn.metrics import RocCurveDisplay

We will use the function RocCurveDisplay.from_estimator() to produce RocCurve
Display.from_
estimator()

several ROC plots, using a shorthand roc_curve.
In [3]: roc_curve = RocCurveDisplay.from_estimator # shorthand

9.6.1 Support Vector Classifier
We now use the SupportVectorClassifier() function (abbreviated SVC()) SupportVector

Classifier()from sklearn to fit the support vector classifier for a given value of the
parameter C. The C argument allows us to specify the cost of a violation
to the margin. When the cost argument is small, then the margins will be
wide and many support vectors will be on the margin or will violate the
margin. When the C argument is large, then the margins will be narrow and
there will be few support vectors on the margin or violating the margin.

Here we demonstrate the use of SVC() on a two-dimensional example, so
that we can plot the resulting decision boundary. We begin by generating
the observations, which belong to two classes, and checking whether the
classes are linearly separable.

In [4]: rng = np.random.default_rng(1)
X = rng.standard_normal((50, 2))
y = np.array([-1]*25+[1]*25)
X[y==1] += 1
fig, ax = subplots(figsize=(8,8))
ax.scatter(X[:,0],

X[:,1],
c=y,
cmap=cm.coolwarm);

They are not. We now fit the classifier.
In [5]: svm_linear = SVC(C=10, kernel='linear')

svm_linear.fit(X, y)

Out[5]: SVC(C=10, kernel='linear')

The support vector classifier with two features can be visualized by plot-
ting values of its decision function. We have included a function for this in decision

functionthe ISLP package (inspired by a similar example in the sklearn docs).

388 9. Support Vector Machines

In [6]: fig, ax = subplots(figsize=(8,8))
plot_svm(X,

y,
svm_linear,
ax=ax)

The decision boundary between the two classes is linear (because we
used the argument kernel='linear'). The support vectors are marked with
+ and the remaining observations are plotted as circles.

What if we instead used a smaller value of the cost parameter?
In [7]: svm_linear_small = SVC(C=0.1, kernel='linear')

svm_linear_small.fit(X, y)
fig, ax = subplots(figsize=(8,8))
plot_svm(X,

y,
svm_linear_small,
ax=ax)

With a smaller value of the cost parameter, we obtain a larger number of
support vectors, because the margin is now wider. For linear kernels, we
can extract the coefficients of the linear decision boundary as follows:

In [8]: svm_linear.coef_

Out[8]: array([[1.173 , 0.7734]])

Since the support vector machine is an estimator in sklearn, we can use
the usual machinery to tune it.

In [9]: kfold = skm.KFold(5,
random_state=0,
shuffle=True)

grid = skm.GridSearchCV(svm_linear,
{'C':[0.001,0.01,0.1,1,5,10,100]},
refit=True,
cv=kfold,
scoring='accuracy')

grid.fit(X, y)
grid.best_params_

Out[9]: {'C': 1}

We can easily access the cross-validation errors for each of these models in
grid.cv_results_. This prints out a lot of detail, so we extract the accuracy
results only.

In [10]: grid.cv_results_[('mean_test_score')]

Out[10]: array([0.46, 0.46, 0.72, 0.74, 0.74, 0.74, 0.74])

We see that C=1 results in the highest cross-validation accuracy of 0.74,
though the accuracy is the same for several values of C. The classifier
grid.best_estimator_ can be used to predict the class label on a set of
test observations. Let’s generate a test data set.

9.6 Lab: Support Vector Machines 389

In [11]: X_test = rng.standard_normal((20, 2))
y_test = np.array([-1]*10+[1]*10)
X_test[y_test==1] += 1

Now we predict the class labels of these test observations. Here we use the
best model selected by cross-validation in order to make the predictions.

In [12]: best_ = grid.best_estimator_
y_test_hat = best_.predict(X_test)
confusion_table(y_test_hat, y_test)

Out[12]: Truth -1 1
Predicted

-1 8 4
1 2 6

Thus, with this value of C, 70% of the test observations are correctly clas-
sified. What if we had instead used C=0.001?

In [13]: svm_ = SVC(C=0.001,
kernel='linear').fit(X, y)

y_test_hat = svm_.predict(X_test)
confusion_table(y_test_hat, y_test)

Out[13]: Truth -1 1
Predicted

-1 2 0
1 8 10

In this case 60% of test observations are correctly classified.
We now consider a situation in which the two classes are linearly sepa-

rable. Then we can find an optimal separating hyperplane using the SVC()
estimator. We first further separate the two classes in our simulated data
so that they are linearly separable:

In [14]: X[y==1] += 1.9;
fig, ax = subplots(figsize=(8,8))
ax.scatter(X[:,0], X[:,1], c=y, cmap=cm.coolwarm);

Now the observations are just barely linearly separable.
In [15]: svm_ = SVC(C=1e5, kernel='linear').fit(X, y)

y_hat = svm_.predict(X)
confusion_table(y_hat, y)

Out[15]: Truth -1 1
Predicted

-1 25 0
1 0 25

We fit the support vector classifier and plot the resulting hyperplane, using
a very large value of C so that no observations are misclassified.

In [16]: fig, ax = subplots(figsize=(8,8))
plot_svm(X,

y,
svm_,
ax=ax)

390 9. Support Vector Machines

Indeed no training errors were made and only three support vectors were
used. In fact, the large value of C also means that these three support points
are on the margin, and define it. One may wonder how good the classifier
could be on test data that depends on only three data points! We now try
a smaller value of C.

In [17]: svm_ = SVC(C=0.1, kernel='linear').fit(X, y)
y_hat = svm_.predict(X)
confusion_table(y_hat, y)

Out[17]: Truth -1 1
Predicted

-1 25 0
1 0 25

Using C=0.1, we again do not misclassify any training observations, but we
also obtain a much wider margin and make use of twelve support vectors.
These jointly define the orientation of the decision boundary, and since
there are more of them, it is more stable. It seems possible that this model
will perform better on test data than the model with C=1e5 (and indeed, a
simple experiment with a large test set would bear this out).

In [18]: fig, ax = subplots(figsize=(8,8))
plot_svm(X,

y,
svm_,
ax=ax)

9.6.2 Support Vector Machine
In order to fit an SVM using a non-linear kernel, we once again use the
SVC() estimator. However, now we use a different value of the parameter
kernel. To fit an SVM with a polynomial kernel we use kernel="poly", and
to fit an SVM with a radial kernel we use kernel="rbf". In the former case
we also use the degree argument to specify a degree for the polynomial
kernel (this is d in (9.22)), and in the latter case we use gamma to specify a
value of γ for the radial basis kernel (9.24).

We first generate some data with a non-linear class boundary, as follows:
In [19]: X = rng.standard_normal((200, 2))

X[:100] += 2
X[100:150] -= 2
y = np.array([1]*150+[2]*50)

Plotting the data makes it clear that the class boundary is indeed non-
linear.

In [20]: fig, ax = subplots(figsize=(8,8))
ax.scatter(X[:,0],

X[:,1],
c=y,
cmap=cm.coolwarm)

Out[20]: <matplotlib.collections.PathCollection at 0x7faa9ba52eb0>

9.6 Lab: Support Vector Machines 391

The data is randomly split into training and testing groups. We then fit
the training data using the SVC() estimator with a radial kernel and γ = 1:

In [21]: (X_train,
X_test,
y_train,
y_test) = skm.train_test_split(X,

y,
test_size=0.5,
random_state=0)

svm_rbf = SVC(kernel="rbf", gamma=1, C=1)
svm_rbf.fit(X_train, y_train)

The plot shows that the resulting SVM has a decidedly non-linear bound-
ary.

In [22]: fig, ax = subplots(figsize=(8,8))
plot_svm(X_train,

y_train,
svm_rbf,
ax=ax)

We can see from the figure that there are a fair number of training errors
in this SVM fit. If we increase the value of C, we can reduce the number
of training errors. However, this comes at the price of a more irregular
decision boundary that seems to be at risk of overfitting the data.

In [23]: svm_rbf = SVC(kernel="rbf", gamma=1, C=1e5)
svm_rbf.fit(X_train, y_train)
fig, ax = subplots(figsize=(8,8))
plot_svm(X_train,

y_train,
svm_rbf,
ax=ax)

We can perform cross-validation using skm.GridSearchCV() to select the
best choice of γ and C for an SVM with a radial kernel:

In [24]: kfold = skm.KFold(5,
random_state=0,
shuffle=True)

grid = skm.GridSearchCV(svm_rbf,
{'C':[0.1,1,10,100,1000],
'gamma':[0.5,1,2,3,4]},

refit=True,
cv=kfold,
scoring='accuracy');

grid.fit(X_train, y_train)
grid.best_params_

Out[24]: {'C': 100, 'gamma': 1}

The best choice of parameters under five-fold CV is achieved at C=1 and
gamma=0.5, though several other values also achieve the same value.

In [25]: best_svm = grid.best_estimator_
fig, ax = subplots(figsize=(8,8))
plot_svm(X_train,

392 9. Support Vector Machines

y_train,
best_svm,
ax=ax)

y_hat_test = best_svm.predict(X_test)
confusion_table(y_hat_test, y_test)

Out[25]: Truth 1 2
Predicted

1 69 6
2 6 19

With these parameters, 12% of test observations are misclassified by this
SVM.

9.6.3 ROC Curves
SVMs and support vector classifiers output class labels for each observation.
However, it is also possible to obtain fitted values for each observation,
which are the numerical scores used to obtain the class labels. For instance,
in the case of a support vector classifier, the fitted value for an observation
X = (X1, X2, . . . , Xp)T takes the form β̂0+ β̂1X1+ β̂2X2+ . . .+ β̂pXp. For
an SVM with a non-linear kernel, the equation that yields the fitted value
is given in (9.23). The sign of the fitted value determines on which side
of the decision boundary the observation lies. Therefore, the relationship
between the fitted value and the class prediction for a given observation
is simple: if the fitted value exceeds zero then the observation is assigned
to one class, and if it is less than zero then it is assigned to the other.
By changing this threshold from zero to some positive value, we skew the
classifications in favor of one class versus the other. By considering a range
of these thresholds, positive and negative, we produce the ingredients for a
ROC plot. We can access these values by calling the decision_function() .function_

decision()method of a fitted SVM estimator.
The function ROCCurveDisplay.from_estimator() (which we have abbre-

viated to roc_curve()) will produce a plot of a ROC curve. It takes a fitted roc_curve()estimator as its first argument, followed by a model matrix X and labels y.
The argument name is used in the legend, while color is used for the color
of the line. Results are plotted on our axis object ax.

In [26]: fig, ax = subplots(figsize=(8,8))
roc_curve(best_svm,

X_train,
y_train,
name='Training',
color='r',
ax=ax);

In this example, the SVM appears to provide accurate predictions. By
increasing γ we can produce a more flexible fit and generate further im-
provements in accuracy.

In [27]: svm_flex = SVC(kernel="rbf",
gamma=50,

9.6 Lab: Support Vector Machines 393

C=1)
svm_flex.fit(X_train, y_train)
fig, ax = subplots(figsize=(8,8))
roc_curve(svm_flex,

X_train,
y_train,
name='Training $\gamma=50$',
color='r',
ax=ax);

However, these ROC curves are all on the training data. We are really
more interested in the level of prediction accuracy on the test data. When
we compute the ROC curves on the test data, the model with γ = 0.5
appears to provide the most accurate results.

In [28]: roc_curve(svm_flex,
X_test,
y_test,
name='Test $\gamma=50$',
color='b',
ax=ax)

fig;

Let’s look at our tuned SVM.
In [29]: fig, ax = subplots(figsize=(8,8))

for (X_, y_, c, name) in zip(
(X_train, X_test),
(y_train, y_test),
('r', 'b'),
('CV tuned on training',
'CV tuned on test')):

roc_curve(best_svm,
X_,
y_,
name=name,
ax=ax,
color=c)

9.6.4 SVM with Multiple Classes
If the response is a factor containing more than two levels, then the SVC()
function will perform multi-class classification using either the one-versus-
one approach (when decision_function_shape=='ovo') or one-versus-rest4

(when decision_function_shape=='ovr'). We explore that setting briefly
here by generating a third class of observations.

In [30]: rng = np.random.default_rng(123)
X = np.vstack([X, rng.standard_normal((50, 2))])
y = np.hstack([y, [0]*50])
X[y==0,1] += 2
fig, ax = subplots(figsize=(8,8))
ax.scatter(X[:,0], X[:,1], c=y, cmap=cm.coolwarm);

4One-versus-rest is also known as one-versus-all.

394 9. Support Vector Machines

We now fit an SVM to the data:
In [31]: svm_rbf_3 = SVC(kernel="rbf",

C=10,
gamma=1,
decision_function_shape='ovo');

svm_rbf_3.fit(X, y)
fig, ax = subplots(figsize=(8,8))
plot_svm(X,

y,
svm_rbf_3,
scatter_cmap=cm.tab10,
ax=ax)

The sklearn.svm library can also be used to perform support vector re-
gression with a numerical response using the estimator SupportVector-
Regression(). SupportVector

Regression()

9.6.5 Application to Gene Expression Data
We now examine the Khan data set, which consists of a number of tissue
samples corresponding to four distinct types of small round blue cell tu-
mors. For each tissue sample, gene expression measurements are available.
The data set consists of training data, xtrain and ytrain, and testing data,
xtest and ytest.

We examine the dimension of the data:
In [32]: Khan = load_data('Khan')

Khan['xtrain'].shape, Khan['xtest'].shape

Out[32]: ((63, 2308), (20, 2308))

This data set consists of expression measurements for 2,308 genes. The
training and test sets consist of 63 and 20 observations, respectively.

We will use a support vector approach to predict cancer subtype using
gene expression measurements. In this data set, there is a very large number
of features relative to the number of observations. This suggests that we
should use a linear kernel, because the additional flexibility that will result
from using a polynomial or radial kernel is unnecessary.

In [33]: khan_linear = SVC(kernel='linear', C=10)
khan_linear.fit(Khan['xtrain'], Khan['ytrain'])
confusion_table(khan_linear.predict(Khan['xtrain']),

Khan['ytrain'])

Out[33]: Truth 1 2 3 4
Predicted

1 8 0 0 0
2 0 23 0 0
3 0 0 12 0
4 0 0 0 20

We see that there are no training errors. In fact, this is not surprising,
because the large number of variables relative to the number of observations
implies that it is easy to find hyperplanes that fully separate the classes.

9.7 Exercises 395

We are more interested in the support vector classifier’s performance on
the test observations.

In [34]: confusion_table(khan_linear.predict(Khan['xtest']),
Khan['ytest'])

Out[34]: Truth 1 2 3 4
Predicted

1 3 0 0 0
2 0 6 2 0
3 0 0 4 0
4 0 0 0 5

We see that using C=10 yields two test set errors on these data.

9.7 Exercises
Conceptual

1. This problem involves hyperplanes in two dimensions.

(a) Sketch the hyperplane 1 + 3X1 − X2 = 0. Indicate the set of
points for which 1 + 3X1 −X2 > 0, as well as the set of points
for which 1 + 3X1 −X2 < 0.

(b) On the same plot, sketch the hyperplane −2 + X1 + 2X2 = 0.
Indicate the set of points for which −2 +X1 + 2X2 > 0, as well
as the set of points for which −2 +X1 + 2X2 < 0.

2. We have seen that in p = 2 dimensions, a linear decision boundary
takes the form β0+β1X1+β2X2 = 0. We now investigate a non-linear
decision boundary.

(a) Sketch the curve

(1 +X1)
2 + (2−X2)

2 = 4.

(b) On your sketch, indicate the set of points for which

(1 +X1)
2 + (2−X2)

2 > 4,

as well as the set of points for which

(1 +X1)
2 + (2−X2)

2 ≤ 4.

(c) Suppose that a classifier assigns an observation to the blue class
if

(1 +X1)
2 + (2−X2)

2 > 4,

and to the red class otherwise. To what class is the observation
(0, 0) classified? (−1, 1)? (2, 2)? (3, 8)?

(d) Argue that while the decision boundary in (c) is not linear in
terms of X1 and X2, it is linear in terms of X1, X2

1 , X2, and
X2

2 .

396 9. Support Vector Machines

3. Here we explore the maximal margin classifier on a toy data set.

(a) We are given n = 7 observations in p = 2 dimensions. For each
observation, there is an associated class label.

Obs. X1 X2 Y
1 3 4 Red
2 2 2 Red
3 4 4 Red
4 1 4 Red
5 2 1 Blue
6 4 3 Blue
7 4 1 Blue

Sketch the observations.
(b) Sketch the optimal separating hyperplane, and provide the equa-

tion for this hyperplane (of the form (9.1)).
(c) Describe the classification rule for the maximal margin classifier.

It should be something along the lines of “Classify to Red if
β0 + β1X1 + β2X2 > 0, and classify to Blue otherwise.” Provide
the values for β0, β1, and β2.

(d) On your sketch, indicate the margin for the maximal margin
hyperplane.

(e) Indicate the support vectors for the maximal margin classifier.
(f) Argue that a slight movement of the seventh observation would

not affect the maximal margin hyperplane.
(g) Sketch a hyperplane that is not the optimal separating hyper-

plane, and provide the equation for this hyperplane.
(h) Draw an additional observation on the plot so that the two

classes are no longer separable by a hyperplane.

Applied
4. Generate a simulated two-class data set with 100 observations and

two features in which there is a visible but non-linear separation be-
tween the two classes. Show that in this setting, a support vector
machine with a polynomial kernel (with degree greater than 1) or a
radial kernel will outperform a support vector classifier on the train-
ing data. Which technique performs best on the test data? Make
plots and report training and test error rates in order to back up
your assertions.

5. We have seen that we can fit an SVM with a non-linear kernel in order
to perform classification using a non-linear decision boundary. We will
now see that we can also obtain a non-linear decision boundary by
performing logistic regression using non-linear transformations of the
features.

9.7 Exercises 397

(a) Generate a data set with n = 500 and p = 2, such that the obser-
vations belong to two classes with a quadratic decision boundary
between them. For instance, you can do this as follows:
rng = np.random.default_rng(5)
x1 = rng.uniform(size=500) - 0.5
x2 = rng.uniform(size=500) - 0.5
y = x1**2 - x2**2 > 0

(b) Plot the observations, colored according to their class labels.
Your plot should display X1 on the x-axis, and X2 on the y-
axis.

(c) Fit a logistic regression model to the data, using X1 and X2 as
predictors.

(d) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be linear.

(e) Now fit a logistic regression model to the data using non-linear
functions of X1 and X2 as predictors (e.g. X2

1 , X1×X2, log(X2),
and so forth).

(f) Apply this model to the training data in order to obtain a pre-
dicted class label for each training observation. Plot the ob-
servations, colored according to the predicted class labels. The
decision boundary should be obviously non-linear. If it is not,
then repeat (a)–(e) until you come up with an example in which
the predicted class labels are obviously non-linear.

(g) Fit a support vector classifier to the data with X1 and X2 as
predictors. Obtain a class prediction for each training observa-
tion. Plot the observations, colored according to the predicted
class labels.

(h) Fit a SVM using a non-linear kernel to the data. Obtain a class
prediction for each training observation. Plot the observations,
colored according to the predicted class labels.

(i) Comment on your results.

6. At the end of Section 9.6.1, it is claimed that in the case of data that is
just barely linearly separable, a support vector classifier with a small
value of C that misclassifies a couple of training observations may
perform better on test data than one with a huge value of C that does
not misclassify any training observations. You will now investigate
this claim.

(a) Generate two-class data with p = 2 in such a way that the classes
are just barely linearly separable.

(b) Compute the cross-validation error rates for support vector
classifiers with a range of C values. How many training obser-
vations are misclassified for each value of C considered, and how
does this relate to the cross-validation errors obtained?

398 9. Support Vector Machines

(c) Generate an appropriate test data set, and compute the test
errors corresponding to each of the values of C considered. Which
value of C leads to the fewest test errors, and how does this
compare to the values of C that yield the fewest training errors
and the fewest cross-validation errors?

(d) Discuss your results.
7. In this problem, you will use support vector approaches in order to

predict whether a given car gets high or low gas mileage based on the
Auto data set.
(a) Create a binary variable that takes on a 1 for cars with gas

mileage above the median, and a 0 for cars with gas mileage
below the median.

(b) Fit a support vector classifier to the data with various values of
C, in order to predict whether a car gets high or low gas mileage.
Report the cross-validation errors associated with different val-
ues of this parameter. Comment on your results. Note you will
need to fit the classifier without the gas mileage variable to pro-
duce sensible results.

(c) Now repeat (b), this time using SVMs with radial and polyno-
mial basis kernels, with different values of gamma and degree and
C. Comment on your results.

(d) Make some plots to back up your assertions in (b) and (c).

Hint: In the lab, we used the plot_svm() function for fitted SVMs.
When p > 2, you can use the keyword argument features to
create plots displaying pairs of variables at a time.

8. This problem involves the OJ data set which is part of the ISLP
package.
(a) Create a training set containing a random sample of 800

observations, and a test set containing the remaining
observations.

(b) Fit a support vector classifier to the training data using
C = 0.01, with Purchase as the response and the other variables
as predictors. How many support points are there?

(c) What are the training and test error rates?
(d) Use cross-validation to select an optimal C. Consider values in

the range 0.01 to 10.
(e) Compute the training and test error rates using this new value

for C.
(f) Repeat parts (b) through (e) using a support vector machine

with a radial kernel. Use the default value for gamma.
(g) Repeat parts (b) through (e) using a support vector machine

with a polynomial kernel. Set degree = 2.
(h) Overall, which approach seems to give the best results on this

data?

	Preface
	Contents
	1 Introduction
	An Overview of Statistical Learning
	Wage Data
	Stock Market Data
	Gene Expression Data

	A Brief History of Statistical Learning
	This Book
	Who Should Read This Book?
	Notation and Simple Matrix Algebra
	Organization of This Book
	Data Sets Used in Labs and Exercises
	Book Website
	Acknowledgements

	2 Statistical Learning
	2.1 What Is Statistical Learning?
	2.1.1 Why Estimate f?
	2.1.2 How Do We Estimate f?
	2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability
	2.1.4 Supervised Versus Unsupervised Learning
	2.1.5 Regression Versus Classification Problems

	2.2 Assessing Model Accuracy
	2.2.1 Measuring the Quality of Fit
	2.2.2 The Bias-Variance Trade-Off
	2.2.3 The Classification Setting

	2.3 Lab: Introduction to Python
	2.3.1 Getting Started
	2.3.2 Basic Commands
	2.3.3 Introduction to Numerical Python
	2.3.4 Graphics
	2.3.5 Sequences and Slice Notation
	2.3.6 Indexing Data
	2.3.7 Loading Data
	2.3.8 For Loops
	2.3.9 Additional Graphical and Numerical Summaries

	2.4 Exercises
	Conceptual
	Applied

	3 Linear Regression
	3.1 Simple Linear Regression
	3.1.1 Estimating the Coefficients
	3.1.2 Assessing the Accuracy of the Coefficient Estimates
	3.1.3 Assessing the Accuracy of the Model

	3.2 Multiple Linear Regression
	3.2.1 Estimating the Regression Coefficients
	3.2.2 Some Important Questions

	3.3 Other Considerations in the Regression Model
	3.3.1 Qualitative Predictors
	3.3.2 Extensions of the Linear Model
	3.3.3 Potential Problems

	3.4 The Marketing Plan
	3.5 Comparison of Linear Regression with K-Nearest Neighbors
	3.6 Lab: Linear Regression
	3.6.1 Importing packages
	3.6.2 Simple Linear Regression
	3.6.3 Multiple Linear Regression
	3.6.4 Multivariate Goodness of Fit
	3.6.5 Interaction Terms
	3.6.6 Non-linear Transformations of the Predictors
	3.6.7 Qualitative Predictors

	3.7 Exercises
	Conceptual
	Applied

	4 Classification
	4.1 An Overview of Classification
	4.2 Why Not Linear Regression?
	4.3 Logistic Regression
	4.3.1 The Logistic Model
	4.3.2 Estimating the Regression Coefficients
	4.3.3 Making Predictions
	4.3.4 Multiple Logistic Regression
	4.3.5 Multinomial Logistic Regression

	4.4 Generative Models for Classification
	4.4.1 Linear Discriminant Analysis for p = 1
	4.4.2 Linear Discriminant Analysis for p >1
	4.4.3 Quadratic Discriminant Analysis
	4.4.4 Naive Bayes

	4.5 A Comparison of Classification Methods
	4.5.1 An Analytical Comparison
	4.5.2 An Empirical Comparison

	4.6 Generalized Linear Models
	4.6.1 Linear Regression on the Bikeshare Data
	4.6.2 Poisson Regression on the Bikeshare Data
	4.6.3 Generalized Linear Models in Greater Generality

	4.7 Lab: Logistic Regression, LDA, QDA, and KNN
	4.7.1 The Stock Market Data
	4.7.2 Logistic Regression
	4.7.3 Linear Discriminant Analysis
	4.7.4 Quadratic Discriminant Analysis
	4.7.5 Naive Bayes
	4.7.6 K-Nearest Neighbors
	4.7.7 Linear and Poisson Regression on the Bikeshare Data

	4.8 Exercises
	Conceptual
	Applied

	5 Resampling Methods
	5.1 Cross-Validation
	5.1.1 The Validation Set Approach
	5.1.2 Leave-One-Out Cross-Validation
	5.1.3 k-Fold Cross-Validation
	5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation
	5.1.5 Cross-Validation on Classification Problems

	5.2 The Bootstrap
	5.3 Lab: Cross-Validation and the Bootstrap
	5.3.1 The Validation Set Approach
	5.3.2 Cross-Validation
	5.3.3 The Bootstrap

	5.4 Exercises
	Conceptual
	Applied

	6 Linear Model Selection and Regularization
	6.1 Subset Selection
	6.1.1 Best Subset Selection
	6.1.2 Stepwise Selection
	6.1.3 Choosing the Optimal Model

	6.2 Shrinkage Methods
	6.2.1 Ridge Regression
	6.2.2 The Lasso
	6.2.3 Selecting the Tuning Parameter

	6.3 Dimension Reduction Methods
	6.3.1 Principal Components Regression
	6.3.2 Partial Least Squares

	6.4 Considerations in High Dimensions
	6.4.1 High-Dimensional Data
	6.4.2 What Goes Wrong in High Dimensions?
	6.4.3 Regression in High Dimensions
	6.4.4 Interpreting Results in High Dimensions

	6.5 Lab: Linear Models and Regularization Methods
	6.5.1 Subset Selection Methods
	6.5.2 Ridge Regression and the Lasso
	6.5.3 PCR and PLS Regression

	6.6 Exercises
	Conceptual
	Applied

	7 Moving Beyond Linearity
	7.1 Polynomial Regression
	7.2 Step Functions
	7.3 Basis Functions
	7.4 Regression Splines
	7.4.1 Piecewise Polynomials
	7.4.2 Constraints and Splines
	7.4.3 The Spline Basis Representation
	7.4.4 Choosing the Number and Locations of the Knots
	7.4.5 Comparison to Polynomial Regression

	7.5 Smoothing Splines
	7.5.1 An Overview of Smoothing Splines
	7.5.2 Choosing the Smoothing Parameter λ

	7.6 Local Regression
	7.7 Generalized Additive Models
	7.7.1 GAMs for Regression Problems
	7.7.2 GAMs for Classification Problems

	7.8 Lab: Non-Linear Modeling
	7.8.1 Polynomial Regression and Step Functions
	7.8.2 Splines
	7.8.3 Smoothing Splines and GAMs
	7.8.4 Local Regression

	7.9 Exercises
	Conceptual
	Applied

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees
	8.2.1 Bagging
	8.2.2 Random Forests
	8.2.3 Boosting
	8.2.4 Bayesian Additive Regression Trees
	8.2.5 Summary of Tree Ensemble Methods

	8.3 Lab: Tree-Based Methods
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting
	8.3.5 Bayesian Additive Regression Trees

	8.4 Exercises
	Conceptual
	Applied

	9 Support Vector Machines
	9.1 Maximal Margin Classifier
	9.1.1 What Is a Hyperplane?
	9.1.2 Classification Using a Separating Hyperplane
	9.1.3 The Maximal Margin Classifier
	9.1.4 Construction of the Maximal Margin Classifier
	9.1.5 The Non-separable Case

	9.2 Support Vector Classifiers
	9.2.1 Overview of the Support Vector Classifier
	9.2.2 Details of the Support Vector Classifier

	9.3 Support Vector Machines
	9.3.1 Classification with Non-Linear Decision Boundaries
	9.3.2 The Support Vector Machine
	9.3.3 An Application to the Heart Disease Data

	9.4 SVMs with More than Two Classes
	9.4.1 One-Versus-One Classification
	9.4.2 One-Versus-All Classification

	9.5 Relationship to Logistic Regression
	9.6 Lab: Support Vector Machines
	9.6.1 Support Vector Classifier
	9.6.2 Support Vector Machine
	9.6.3 ROC Curves
	9.6.4 SVM with Multiple Classes
	9.6.5 Application to Gene Expression Data

	9.7 Exercises
	Conceptual
	Applied

	10 Deep Learning
	10.1 Single Layer Neural Networks
	10.2 Multilayer Neural Networks
	10.3 Convolutional Neural Networks
	10.3.1 Convolution Layers
	10.3.2 Pooling Layers
	10.3.3 Architecture of a Convolutional Neural Network
	10.3.4 Data Augmentation
	10.3.5 Results Using a Pretrained Classifier

	10.4 Document Classification
	10.5 Recurrent Neural Networks
	10.5.1 Sequential Models for Document Classification
	10.5.2 Time Series Forecasting
	10.5.3 Summary of RNNs

	10.6 When to Use Deep Learning
	10.7 Fitting a Neural Network
	10.7.1 Backpropagation
	10.7.2 Regularization and Stochastic Gradient Descent
	10.7.3 Dropout Learning
	10.7.4 Network Tuning

	10.8 Interpolation and Double Descent
	10.9 Lab: Deep Learning
	10.9.1 Single Layer Network on Hitters Data
	10.9.2 Multilayer Network on the MNIST Digit Data
	10.9.3 Convolutional Neural Networks
	10.9.4 Using Pretrained CNN Models
	10.9.5 IMDB Document Classification
	10.9.6 Recurrent Neural Networks

	10.10 Exercises
	Conceptual
	Applied

	11 Survival Analysis and Censored Data
	11.1 Survival and Censoring Times
	11.2 A Closer Look at Censoring
	11.3 The Kaplan–Meier Survival Curve
	11.4 The Log-Rank Test
	11.5 Regression Models With a Survival Response
	11.5.1 The Hazard Function
	11.5.2 Proportional Hazards
	11.5.3 Example: Brain Cancer Data
	11.5.4 Example: Publication Data

	11.6 Shrinkage for the Cox Model
	11.7 Additional Topics
	11.7.1 Area Under the Curve for Survival Analysis
	11.7.2 Choice of Time Scale
	11.7.3 Time-Dependent Covariates
	11.7.4 Checking the Proportional Hazards Assumption
	11.7.5 Survival Trees

	11.8 Lab: Survival Analysis
	11.8.1 Brain Cancer Data
	11.8.2 Publication Data
	11.8.3 Call Center Data

	11.9 Exercises
	Conceptual
	Applied

	12 Unsupervised Learning
	12.1 The Challenge of Unsupervised Learning
	12.2 Principal Components Analysis
	12.2.1 What Are Principal Components?
	12.2.2 Another Interpretation of Principal Components
	12.2.3 The Proportion of Variance Explained
	12.2.4 More on PCA
	12.2.5 Other Uses for Principal Components

	12.3 Missing Values and Matrix Completion
	12.4 Clustering Methods
	12.4.1 K-Means Clustering
	12.4.2 Hierarchical Clustering
	12.4.3 Practical Issues in Clustering

	12.5 Lab: Unsupervised Learning
	12.5.1 Principal Components Analysis
	12.5.2 Matrix Completion
	12.5.3 Clustering
	12.5.4 NCI60 Data Example

	12.6 Exercises
	Conceptual
	Applied

	13 Multiple Testing
	13.1 A Quick Review of Hypothesis Testing
	13.1.1 Testing a Hypothesis
	13.1.2 Type I and Type II Errors

	13.2 The Challenge of Multiple Testing
	13.3 The Family-Wise Error Rate
	13.3.1 What is the Family-Wise Error Rate?
	13.3.2 Approaches to Control the Family-Wise Error Rate
	13.3.3 Trade-Off Between the FWER and Power

	13.4 The False Discovery Rate
	13.4.1 Intuition for the False Discovery Rate
	13.4.2 The Benjamini–Hochberg Procedure

	13.5 A Re-Sampling Approach to p-Values and False Discovery Rates
	13.5.1 A Re-Sampling Approach to the p-Value
	13.5.2 A Re-Sampling Approach to the False Discovery Rate
	13.5.3 When Are Re-Sampling Approaches Useful?

	13.6 Lab: Multiple Testing
	13.6.1 Review of Hypothesis Tests
	13.6.2 Family-Wise Error Rate
	13.6.3 False Discovery Rate
	13.6.4 A Re-Sampling Approach

	13.7 Exercises
	Conceptual
	Applied

	Index

