
8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 343

8.2 Bagging, Random Forests, Boosting, and
Bayesian Additive Regression Trees

An ensemble method is an approach that combines many simple “building ensembleblock” models in order to obtain a single and potentially very powerful
model. These simple building block models are sometimes known as weak
learners, since they may lead to mediocre predictions on their own. weak

learnersWe will now discuss bagging, random forests, boosting, and Bayesian
additive regression trees. These are ensemble methods for which the simple
building block is a regression or a classification tree.

8.2.1 Bagging
The bootstrap, introduced in Chapter 5, is an extremely powerful idea. It is
used in many situations in which it is hard or even impossible to directly
compute the standard deviation of a quantity of interest. We see here that
the bootstrap can be used in a completely different context, in order to
improve statistical learning methods such as decision trees.

The decision trees discussed in Section 8.1 suffer from high variance.
This means that if we split the training data into two parts at random,
and fit a decision tree to both halves, the results that we get could be
quite different. In contrast, a procedure with low variance will yield similar
results if applied repeatedly to distinct data sets; linear regression tends
to have low variance, if the ratio of n to p is moderately large. Bootstrap
aggregation, or bagging, is a general-purpose procedure for reducing the baggingvariance of a statistical learning method; we introduce it here because it is
particularly useful and frequently used in the context of decision trees.

Recall that given a set of n independent observations Z1, . . . , Zn, each
with variance σ2, the variance of the mean Z̄ of the observations is given
by σ2/n. In other words, averaging a set of observations reduces variance.
Hence a natural way to reduce the variance and increase the test set ac-
curacy of a statistical learning method is to take many training sets from
the population, build a separate prediction model using each training set,
and average the resulting predictions. In other words, we could calculate
f̂1(x), f̂2(x), . . . , f̂B(x) using B separate training sets, and average them
in order to obtain a single low-variance statistical learning model, given by

f̂avg(x) =
1

B

B∑

b=1

f̂ b(x).

Of course, this is not practical because we generally do not have access
to multiple training sets. Instead, we can bootstrap, by taking repeated
samples from the (single) training data set. In this approach we generate
B different bootstrapped training data sets. We then train our method on
the bth bootstrapped training set in order to get f̂∗b(x), and finally average
all the predictions, to obtain

f̂bag(x) =
1

B

B∑

b=1

f̂∗b(x).

344 8. Tree-Based Methods

0 50 100 150 200 250 300

0.
10

0.
15

0.
20

0.
25

0.
30

Number of Trees

Er
ro

r

Test: Bagging
Test: RandomForest
OOB: Bagging
OOB: RandomForest

FIGURE 8.8. Bagging and random forest results for the Heart data. The test
error (black and orange) is shown as a function of B, the number of bootstrapped
training sets used. Random forests were applied with m =

√
p. The dashed line

indicates the test error resulting from a single classification tree. The green and
blue traces show the OOB error, which in this case is — by chance — considerably
lower.

This is called bagging.
While bagging can improve predictions for many regression methods,

it is particularly useful for decision trees. To apply bagging to regression
trees, we simply construct B regression trees using B bootstrapped training
sets, and average the resulting predictions. These trees are grown deep,
and are not pruned. Hence each individual tree has high variance, but
low bias. Averaging these B trees reduces the variance. Bagging has been
demonstrated to give impressive improvements in accuracy by combining
together hundreds or even thousands of trees into a single procedure.

Thus far, we have described the bagging procedure in the regression
context, to predict a quantitative outcome Y . How can bagging be extended
to a classification problem where Y is qualitative? In that situation, there
are a few possible approaches, but the simplest is as follows. For a given test
observation, we can record the class predicted by each of the B trees, and
take a majority vote: the overall prediction is the most commonly occurring majority

voteclass among the B predictions.
Figure 8.8 shows the results from bagging trees on the Heart data. The

test error rate is shown as a function of B, the number of trees constructed
using bootstrapped training data sets. We see that the bagging test error
rate is slightly lower in this case than the test error rate obtained from a
single tree. The number of trees B is not a critical parameter with bagging;
using a very large value of B will not lead to overfitting. In practice we

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 345

use a value of B sufficiently large that the error has settled down. Using
B = 100 is sufficient to achieve good performance in this example.

Out-of-Bag Error Estimation
It turns out that there is a very straightforward way to estimate the test
error of a bagged model, without the need to perform cross-validation or
the validation set approach. Recall that the key to bagging is that trees are
repeatedly fit to bootstrapped subsets of the observations. One can show
that on average, each bagged tree makes use of around two-thirds of the
observations.3 The remaining one-third of the observations not used to fit a
given bagged tree are referred to as the out-of-bag (OOB) observations. We out-of-bagcan predict the response for the ith observation using each of the trees in
which that observation was OOB. This will yield around B/3 predictions
for the ith observation. In order to obtain a single prediction for the ith
observation, we can average these predicted responses (if regression is the
goal) or can take a majority vote (if classification is the goal). This leads
to a single OOB prediction for the ith observation. An OOB prediction
can be obtained in this way for each of the n observations, from which the
overall OOB MSE (for a regression problem) or classification error (for a
classification problem) can be computed. The resulting OOB error is a valid
estimate of the test error for the bagged model, since the response for each
observation is predicted using only the trees that were not fit using that
observation. Figure 8.8 displays the OOB error on the Heart data. It can
be shown that with B sufficiently large, OOB error is virtually equivalent
to leave-one-out cross-validation error. The OOB approach for estimating
the test error is particularly convenient when performing bagging on large
data sets for which cross-validation would be computationally onerous.

Variable Importance Measures
As we have discussed, bagging typically results in improved accuracy over
prediction using a single tree. Unfortunately, however, it can be difficult to
interpret the resulting model. Recall that one of the advantages of decision
trees is the attractive and easily interpreted diagram that results, such as
the one displayed in Figure 8.1. However, when we bag a large number of
trees, it is no longer possible to represent the resulting statistical learning
procedure using a single tree, and it is no longer clear which variables
are most important to the procedure. Thus, bagging improves prediction
accuracy at the expense of interpretability.

Although the collection of bagged trees is much more difficult to interpret
than a single tree, one can obtain an overall summary of the importance of
each predictor using the RSS (for bagging regression trees) or the Gini index
(for bagging classification trees). In the case of bagging regression trees, we
can record the total amount that the RSS (8.1) is decreased due to splits
over a given predictor, averaged over all B trees. A large value indicates
an important predictor. Similarly, in the context of bagging classification

3This relates to Exercise 2 of Chapter 5.

346 8. Tree-Based Methods

Thal

Ca

ChestPain

Oldpeak

MaxHR

RestBP

Age

Chol

Slope

Sex

ExAng

RestECG

Fbs

0 20 40 60 80 100

Variable Importance

FIGURE 8.9. A variable importance plot for the Heart data. Variable impor-
tance is computed using the mean decrease in Gini index, and expressed relative
to the maximum.

trees, we can add up the total amount that the Gini index (8.6) is decreased
by splits over a given predictor, averaged over all B trees.

A graphical representation of the variable importances in the Heart data variable
importanceis shown in Figure 8.9. We see the mean decrease in Gini index for each vari-

able, relative to the largest. The variables with the largest mean decrease
in Gini index are Thal, Ca, and ChestPain.

8.2.2 Random Forests
Random forests provide an improvement over bagged trees by way of a random

forestsmall tweak that decorrelates the trees. As in bagging, we build a number
of decision trees on bootstrapped training samples. But when building these
decision trees, each time a split in a tree is considered, a random sample of
m predictors is chosen as split candidates from the full set of p predictors.
The split is allowed to use only one of those m predictors. A fresh sample of
m predictors is taken at each split, and typically we choose m ≈ √p—that
is, the number of predictors considered at each split is approximately equal
to the square root of the total number of predictors (4 out of the 13 for the
Heart data).

In other words, in building a random forest, at each split in the tree,
the algorithm is not even allowed to consider a majority of the available
predictors. This may sound crazy, but it has a clever rationale. Suppose
that there is one very strong predictor in the data set, along with a num-
ber of other moderately strong predictors. Then in the collection of bagged
trees, most or all of the trees will use this strong predictor in the top split.
Consequently, all of the bagged trees will look quite similar to each other.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 347

Hence the predictions from the bagged trees will be highly correlated. Un-
fortunately, averaging many highly correlated quantities does not lead to
as large of a reduction in variance as averaging many uncorrelated quan-
tities. In particular, this means that bagging will not lead to a substantial
reduction in variance over a single tree in this setting.

Random forests overcome this problem by forcing each split to consider
only a subset of the predictors. Therefore, on average (p − m)/p of the
splits will not even consider the strong predictor, and so other predictors
will have more of a chance. We can think of this process as decorrelating
the trees, thereby making the average of the resulting trees less variable
and hence more reliable.

The main difference between bagging and random forests is the choice
of predictor subset size m. For instance, if a random forest is built using
m = p, then this amounts simply to bagging. On the Heart data, random
forests using m =

√
p leads to a reduction in both test error and OOB error

over bagging (Figure 8.8).
Using a small value of m in building a random forest will typically be

helpful when we have a large number of correlated predictors. We applied
random forests to a high-dimensional biological data set consisting of ex-
pression measurements of 4,718 genes measured on tissue samples from 349
patients. There are around 20,000 genes in humans, and individual genes
have different levels of activity, or expression, in particular cells, tissues,
and biological conditions. In this data set, each of the patient samples has
a qualitative label with 15 different levels: either normal or 1 of 14 different
types of cancer. Our goal was to use random forests to predict cancer type
based on the 500 genes that have the largest variance in the training set.
We randomly divided the observations into a training and a test set, and
applied random forests to the training set for three different values of the
number of splitting variables m. The results are shown in Figure 8.10. The
error rate of a single tree is 45.7%, and the null rate is 75.4%.4 We see that
using 400 trees is sufficient to give good performance, and that the choice
m =

√
p gave a small improvement in test error over bagging (m = p) in

this example. As with bagging, random forests will not overfit if we increase
B, so in practice we use a value of B sufficiently large for the error rate to
have settled down.

8.2.3 Boosting
We now discuss boosting, yet another approach for improving the predic- boostingtions resulting from a decision tree. Like bagging, boosting is a general
approach that can be applied to many statistical learning methods for re-
gression or classification. Here we restrict our discussion of boosting to the
context of decision trees.

Recall that bagging involves creating multiple copies of the original train-
ing data set using the bootstrap, fitting a separate decision tree to each
copy, and then combining all of the trees in order to create a single predic-

4The null rate results from simply classifying each observation to the dominant class
overall, which is in this case the normal class.

348 8. Tree-Based Methods

0 100 200 300 400 500

0.
2

0.
3

0.
4

0.
5

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
Er

ro
r

m=p
m=p/2
m= p

FIGURE 8.10. Results from random forests for the 15-class gene expression
data set with p = 500 predictors. The test error is displayed as a function of
the number of trees. Each colored line corresponds to a different value of m, the
number of predictors available for splitting at each interior tree node. Random
forests (m < p) lead to a slight improvement over bagging (m = p). A single
classification tree has an error rate of 45.7 %.

tive model. Notably, each tree is built on a bootstrap data set, independent
of the other trees. Boosting works in a similar way, except that the trees are
grown sequentially: each tree is grown using information from previously
grown trees. Boosting does not involve bootstrap sampling; instead each
tree is fit on a modified version of the original data set.

Consider first the regression setting. Like bagging, boosting involves com-
bining a large number of decision trees, f̂1, . . . , f̂B . Boosting is described
in Algorithm 8.2.

What is the idea behind this procedure? Unlike fitting a single large deci-
sion tree to the data, which amounts to fitting the data hard and potentially
overfitting, the boosting approach instead learns slowly. Given the current
model, we fit a decision tree to the residuals from the model. That is, we
fit a tree using the current residuals, rather than the outcome Y , as the re-
sponse. We then add this new decision tree into the fitted function in order
to update the residuals. Each of these trees can be rather small, with just
a few terminal nodes, determined by the parameter d in the algorithm. By
fitting small trees to the residuals, we slowly improve f̂ in areas where it
does not perform well. The shrinkage parameter λ slows the process down
even further, allowing more and different shaped trees to attack the resid-
uals. In general, statistical learning approaches that learn slowly tend to
perform well. Note that in boosting, unlike in bagging, the construction of
each tree depends strongly on the trees that have already been grown.

We have just described the process of boosting regression trees. Boosting
classification trees proceeds in a similar but slightly more complex way, and
the details are omitted here.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 349

Algorithm 8.2 Boosting for Regression Trees

1. Set f̂(x) = 0 and ri = yi for all i in the training set.

2. For b = 1, 2, . . . , B, repeat:

(a) Fit a tree f̂ b with d splits (d+1 terminal nodes) to the training
data (X, r).

(b) Update f̂ by adding in a shrunken version of the new tree:

f̂(x)← f̂(x) + λf̂ b(x). (8.10)

(c) Update the residuals,

ri ← ri − λf̂ b(xi). (8.11)

3. Output the boosted model,

f̂(x) =
B∑

b=1

λf̂ b(x). (8.12)

Boosting has three tuning parameters:

1. The number of trees B. Unlike bagging and random forests, boosting
can overfit if B is too large, although this overfitting tends to occur
slowly if at all. We use cross-validation to select B.

2. The shrinkage parameter λ, a small positive number. This controls
the rate at which boosting learns. Typical values are 0.01 or 0.001, and
the right choice can depend on the problem. Very small λ can require
using a very large value of B in order to achieve good performance.

3. The number d of splits in each tree, which controls the complexity
of the boosted ensemble. Often d = 1 works well, in which case each
tree is a stump, consisting of a single split. In this case, the boosted stumpensemble is fitting an additive model, since each term involves only a
single variable. More generally d is the interaction depth, and controls interaction

depththe interaction order of the boosted model, since d splits can involve
at most d variables.

In Figure 8.11, we applied boosting to the 15-class cancer gene expression
data set, in order to develop a classifier that can distinguish the normal
class from the 14 cancer classes. We display the test error as a function of
the total number of trees and the interaction depth d. We see that simple
stumps with an interaction depth of one perform well if enough of them
are included. This model outperforms the depth-two model, and both out-
perform a random forest. This highlights one difference between boosting
and random forests: in boosting, because the growth of a particular tree
takes into account the other trees that have already been grown, smaller

350 8. Tree-Based Methods

0 1000 2000 3000 4000 5000

0.
05

0.
10

0.
15

0.
20

0.
25

Number of Trees

Te
st

 C
la

ss
ifi

ca
tio

n
Er

ro
r

Boosting: depth=1
Boosting: depth=2
RandomForest: m= p

FIGURE 8.11. Results from performing boosting and random forests on the
15-class gene expression data set in order to predict cancer versus normal. The test
error is displayed as a function of the number of trees. For the two boosted models,
λ = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both outperform
the random forest, although the standard errors are around 0.02, making none of
these differences significant. The test error rate for a single tree is 24 %.

trees are typically sufficient. Using smaller trees can aid in interpretability
as well; for instance, using stumps leads to an additive model.

8.2.4 Bayesian Additive Regression Trees
Finally, we discuss Bayesian additive regression trees (BART), another en- Bayesian

additive
regression
trees

semble method that uses decision trees as its building blocks. For simplicity,
we present BART for regression (as opposed to classification).

Recall that bagging and random forests make predictions from an aver-
age of regression trees, each of which is built using a random sample of data
and/or predictors. Each tree is built separately from the others. By con-
trast, boosting uses a weighted sum of trees, each of which is constructed
by fitting a tree to the residual of the current fit. Thus, each new tree at-
tempts to capture signal that is not yet accounted for by the current set
of trees. BART is related to both approaches: each tree is constructed in
a random manner as in bagging and random forests, and each tree tries to
capture signal not yet accounted for by the current model, as in boosting.
The main novelty in BART is the way in which new trees are generated.

Before we introduce the BART algorithm, we define some notation. We
let K denote the number of regression trees, and B the number of iterations
for which the BART algorithm will be run. The notation f̂ b

k(x) represents
the prediction at x for the kth regression tree used in the bth iteration. At
the end of each iteration, the K trees from that iteration will be summed,
i.e. f̂ b(x) =

∑K
k=1 f̂

b
k(x) for b = 1, . . . , B.

In the first iteration of the BART algorithm, all trees are initialized to
have a single root node, with f̂1

k (x) =
1

nK

∑n
i=1 yi, the mean of the response

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 351

(a): f̂ b−1
k (X) (b): Possibility #1 for f̂ b

k(X)

|X < 169.17

X < 114.305

X < 140.35
−0.5031

 0.2667 −0.2470

 0.4079

|X < 169.17

X < 114.305
X < 140.35

−0.5110

 0.2693 −0.2649

 0.4221

(c): Possibility #2 for f̂ b
k(X) (d): Possibility #3 for f̂ b

k(X)

|X < 169.17

−0.1218 0.4079

|X < 169.17

X < 114.305

X < 106.755 X < 140.35

−0.05089 −1.03100 0.26670 −0.24700

 0.40790

FIGURE 8.12. A schematic of perturbed trees from the BART algorithm. (a):
The kth tree at the (b− 1)st iteration, f̂ b−1

k (X), is displayed. Panels (b)–(d)
display three of many possibilities for f̂ b

k(X), given the form of f̂ b−1
k (X). (b): One

possibility is that f̂ b
k(X) has the same structure as f̂ b−1

k (X), but with different
predictions at the terminal nodes. (c): Another possibility is that f̂ b

k(X) results
from pruning f̂ b−1

k (X). (d): Alternatively, f̂ b
k(X) may have more terminal nodes

than f̂ b−1
k (X).

values divided by the total number of trees. Thus, f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

In subsequent iterations, BART updates each of the K trees, one at a
time. In the bth iteration, to update the kth tree, we subtract from each
response value the predictions from all but the kth tree, in order to obtain
a partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi)

for the ith observation, i = 1, . . . , n. Rather than fitting a fresh tree to this
partial residual, BART randomly chooses a perturbation to the tree from
the previous iteration (f̂ b−1

k) from a set of possible perturbations, favoring
ones that improve the fit to the partial residual. There are two components
to this perturbation:

1. We may change the structure of the tree by adding or pruning branches.

2. We may change the prediction in each terminal node of the tree.

Figure 8.12 illustrates examples of possible perturbations to a tree.
The output of BART is a collection of prediction models,

f̂ b(x) =
K∑

k=1

f̂ b
k(x), for b = 1, 2, . . . , B.

352 8. Tree-Based Methods

Algorithm 8.3 Bayesian Additive Regression Trees

1. Let f̂1
1 (x) = f̂1

2 (x) = · · · = f̂1
K(x) = 1

nK

∑n
i=1 yi.

2. Compute f̂1(x) =
∑K

k=1 f̂
1
k (x) =

1
n

∑n
i=1 yi.

3. For b = 2, . . . , B:

(a) For k = 1, 2, . . . ,K:
i. For i = 1, . . . , n, compute the current partial residual

ri = yi −
∑

k′<k

f̂ b
k′(xi)−

∑

k′>k

f̂ b−1
k′ (xi).

ii. Fit a new tree, f̂ b
k(x), to ri, by randomly perturbing the

kth tree from the previous iteration, f̂ b−1
k (x). Perturbations

that improve the fit are favored.
(b) Compute f̂ b(x) =

∑K
k=1 f̂

b
k(x).

4. Compute the mean after L burn-in samples,

f̂(x) =
1

B − L

B∑

b=L+1

f̂ b(x).

We typically throw away the first few of these prediction models, since
models obtained in the earlier iterations — known as the burn-in period burn-in— tend not to provide very good results. We can let L denote the num-
ber of burn-in iterations; for instance, we might take L = 200. Then, to
obtain a single prediction, we simply take the average after the burn-in
iterations, f̂(x) = 1

B−L

∑B
b=L+1 f̂

b(x). However, it is also possible to com-
pute quantities other than the average: for instance, the percentiles of
f̂L+1(x), . . . , f̂B(x) provide a measure of uncertainty in the final predic-
tion. The overall BART procedure is summarized in Algorithm 8.3.

A key element of the BART approach is that in Step 3(a)ii., we do not fit
a fresh tree to the current partial residual: instead, we try to improve the fit
to the current partial residual by slightly modifying the tree obtained in the
previous iteration (see Figure 8.12). Roughly speaking, this guards against
overfitting since it limits how “hard” we fit the data in each iteration.
Furthermore, the individual trees are typically quite small. We limit the
tree size in order to avoid overfitting the data, which would be more likely
to occur if we grew very large trees.

Figure 8.13 shows the result of applying BART to the Heart data, using
K = 200 trees, as the number of iterations is increased to 10, 000. During
the initial iterations, the test and training errors jump around a bit. After
this initial burn-in period, the error rates settle down. We note that there
is only a small difference between the training error and the test error,
indicating that the tree perturbation process largely avoids overfitting.

8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees 353

5 10 50 100 500 5000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Number of Iterations

Er
ro

r

BART Training Error
BART Test Error
Boosting Training Error
Boosting Test Error

FIGURE 8.13. BART and boosting results for the Heart data. Both training
and test errors are displayed. After a burn-in period of 100 iterations (shown in
gray), the error rates for BART settle down. Boosting begins to overfit after a
few hundred iterations.

The training and test errors for boosting are also displayed in Figure 8.13.
We see that the test error for boosting approaches that of BART, but then
begins to increase as the number of iterations increases. Furthermore, the
training error for boosting decreases as the number of iterations increases,
indicating that boosting has overfit the data.

Though the details are outside of the scope of this book, it turns out
that the BART method can be viewed as a Bayesian approach to fitting an
ensemble of trees: each time we randomly perturb a tree in order to fit the
residuals, we are in fact drawing a new tree from a posterior distribution.
(Of course, this Bayesian connection is the motivation for BART’s name.)
Furthermore, Algorithm 8.3 can be viewed as a Markov chain Monte Carlo Markov

chain Monte
Carlo

algorithm for fitting the BART model.
When we apply BART, we must select the number of trees K, the number

of iterations B, and the number of burn-in iterations L. We typically choose
large values for B and K, and a moderate value for L: for instance, K = 200,
B = 1,000, and L = 100 is a reasonable choice. BART has been shown to
have very impressive out-of-box performance — that is, it performs well
with minimal tuning.

8.2.5 Summary of Tree Ensemble Methods
Trees are an attractive choice of weak learner for an ensemble method
for a number of reasons, including their flexibility and ability to handle

354 8. Tree-Based Methods

predictors of mixed types (i.e. qualitative as well as quantitative). We have
now seen four approaches for fitting an ensemble of trees: bagging, random
forests, boosting, and BART.

• In bagging, the trees are grown independently on random samples of
the observations. Consequently, the trees tend to be quite similar to
each other. Thus, bagging can get caught in local optima and can fail
to thoroughly explore the model space.

• In random forests, the trees are once again grown independently on
random samples of the observations. However, each split on each tree
is performed using a random subset of the features, thereby decorre-
lating the trees, and leading to a more thorough exploration of model
space relative to bagging.

• In boosting, we only use the original data, and do not draw any ran-
dom samples. The trees are grown successively, using a “slow” learn-
ing approach: each new tree is fit to the signal that is left over from
the earlier trees, and shrunken down before it is used.

• In BART, we once again only make use of the original data, and we
grow the trees successively. However, each tree is perturbed in order
to avoid local minima and achieve a more thorough exploration of
the model space.

8.3 Lab: Tree-Based Methods
We import some of our usual libraries at this top level.

In [1]: import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
from statsmodels.datasets import get_rdataset
import sklearn.model_selection as skm
from ISLP import load_data, confusion_table
from ISLP.models import ModelSpec as MS

We also collect the new imports needed for this lab.

In [2]: from sklearn.tree import (DecisionTreeClassifier as DTC,
DecisionTreeRegressor as DTR,
plot_tree,
export_text)

from sklearn.metrics import (accuracy_score,
log_loss)

from sklearn.ensemble import \
(RandomForestRegressor as RF,
GradientBoostingRegressor as GBR)

from ISLP.bart import BART

	Preface
	Contents
	1 Introduction
	An Overview of Statistical Learning
	Wage Data
	Stock Market Data
	Gene Expression Data

	A Brief History of Statistical Learning
	This Book
	Who Should Read This Book?
	Notation and Simple Matrix Algebra
	Organization of This Book
	Data Sets Used in Labs and Exercises
	Book Website
	Acknowledgements

	2 Statistical Learning
	2.1 What Is Statistical Learning?
	2.1.1 Why Estimate f?
	2.1.2 How Do We Estimate f?
	2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability
	2.1.4 Supervised Versus Unsupervised Learning
	2.1.5 Regression Versus Classification Problems

	2.2 Assessing Model Accuracy
	2.2.1 Measuring the Quality of Fit
	2.2.2 The Bias-Variance Trade-Off
	2.2.3 The Classification Setting

	2.3 Lab: Introduction to Python
	2.3.1 Getting Started
	2.3.2 Basic Commands
	2.3.3 Introduction to Numerical Python
	2.3.4 Graphics
	2.3.5 Sequences and Slice Notation
	2.3.6 Indexing Data
	2.3.7 Loading Data
	2.3.8 For Loops
	2.3.9 Additional Graphical and Numerical Summaries

	2.4 Exercises
	Conceptual
	Applied

	3 Linear Regression
	3.1 Simple Linear Regression
	3.1.1 Estimating the Coefficients
	3.1.2 Assessing the Accuracy of the Coefficient Estimates
	3.1.3 Assessing the Accuracy of the Model

	3.2 Multiple Linear Regression
	3.2.1 Estimating the Regression Coefficients
	3.2.2 Some Important Questions

	3.3 Other Considerations in the Regression Model
	3.3.1 Qualitative Predictors
	3.3.2 Extensions of the Linear Model
	3.3.3 Potential Problems

	3.4 The Marketing Plan
	3.5 Comparison of Linear Regression with K-Nearest Neighbors
	3.6 Lab: Linear Regression
	3.6.1 Importing packages
	3.6.2 Simple Linear Regression
	3.6.3 Multiple Linear Regression
	3.6.4 Multivariate Goodness of Fit
	3.6.5 Interaction Terms
	3.6.6 Non-linear Transformations of the Predictors
	3.6.7 Qualitative Predictors

	3.7 Exercises
	Conceptual
	Applied

	4 Classification
	4.1 An Overview of Classification
	4.2 Why Not Linear Regression?
	4.3 Logistic Regression
	4.3.1 The Logistic Model
	4.3.2 Estimating the Regression Coefficients
	4.3.3 Making Predictions
	4.3.4 Multiple Logistic Regression
	4.3.5 Multinomial Logistic Regression

	4.4 Generative Models for Classification
	4.4.1 Linear Discriminant Analysis for p = 1
	4.4.2 Linear Discriminant Analysis for p >1
	4.4.3 Quadratic Discriminant Analysis
	4.4.4 Naive Bayes

	4.5 A Comparison of Classification Methods
	4.5.1 An Analytical Comparison
	4.5.2 An Empirical Comparison

	4.6 Generalized Linear Models
	4.6.1 Linear Regression on the Bikeshare Data
	4.6.2 Poisson Regression on the Bikeshare Data
	4.6.3 Generalized Linear Models in Greater Generality

	4.7 Lab: Logistic Regression, LDA, QDA, and KNN
	4.7.1 The Stock Market Data
	4.7.2 Logistic Regression
	4.7.3 Linear Discriminant Analysis
	4.7.4 Quadratic Discriminant Analysis
	4.7.5 Naive Bayes
	4.7.6 K-Nearest Neighbors
	4.7.7 Linear and Poisson Regression on the Bikeshare Data

	4.8 Exercises
	Conceptual
	Applied

	5 Resampling Methods
	5.1 Cross-Validation
	5.1.1 The Validation Set Approach
	5.1.2 Leave-One-Out Cross-Validation
	5.1.3 k-Fold Cross-Validation
	5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation
	5.1.5 Cross-Validation on Classification Problems

	5.2 The Bootstrap
	5.3 Lab: Cross-Validation and the Bootstrap
	5.3.1 The Validation Set Approach
	5.3.2 Cross-Validation
	5.3.3 The Bootstrap

	5.4 Exercises
	Conceptual
	Applied

	6 Linear Model Selection and Regularization
	6.1 Subset Selection
	6.1.1 Best Subset Selection
	6.1.2 Stepwise Selection
	6.1.3 Choosing the Optimal Model

	6.2 Shrinkage Methods
	6.2.1 Ridge Regression
	6.2.2 The Lasso
	6.2.3 Selecting the Tuning Parameter

	6.3 Dimension Reduction Methods
	6.3.1 Principal Components Regression
	6.3.2 Partial Least Squares

	6.4 Considerations in High Dimensions
	6.4.1 High-Dimensional Data
	6.4.2 What Goes Wrong in High Dimensions?
	6.4.3 Regression in High Dimensions
	6.4.4 Interpreting Results in High Dimensions

	6.5 Lab: Linear Models and Regularization Methods
	6.5.1 Subset Selection Methods
	6.5.2 Ridge Regression and the Lasso
	6.5.3 PCR and PLS Regression

	6.6 Exercises
	Conceptual
	Applied

	7 Moving Beyond Linearity
	7.1 Polynomial Regression
	7.2 Step Functions
	7.3 Basis Functions
	7.4 Regression Splines
	7.4.1 Piecewise Polynomials
	7.4.2 Constraints and Splines
	7.4.3 The Spline Basis Representation
	7.4.4 Choosing the Number and Locations of the Knots
	7.4.5 Comparison to Polynomial Regression

	7.5 Smoothing Splines
	7.5.1 An Overview of Smoothing Splines
	7.5.2 Choosing the Smoothing Parameter λ

	7.6 Local Regression
	7.7 Generalized Additive Models
	7.7.1 GAMs for Regression Problems
	7.7.2 GAMs for Classification Problems

	7.8 Lab: Non-Linear Modeling
	7.8.1 Polynomial Regression and Step Functions
	7.8.2 Splines
	7.8.3 Smoothing Splines and GAMs
	7.8.4 Local Regression

	7.9 Exercises
	Conceptual
	Applied

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees
	8.2.1 Bagging
	8.2.2 Random Forests
	8.2.3 Boosting
	8.2.4 Bayesian Additive Regression Trees
	8.2.5 Summary of Tree Ensemble Methods

	8.3 Lab: Tree-Based Methods
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting
	8.3.5 Bayesian Additive Regression Trees

	8.4 Exercises
	Conceptual
	Applied

	9 Support Vector Machines
	9.1 Maximal Margin Classifier
	9.1.1 What Is a Hyperplane?
	9.1.2 Classification Using a Separating Hyperplane
	9.1.3 The Maximal Margin Classifier
	9.1.4 Construction of the Maximal Margin Classifier
	9.1.5 The Non-separable Case

	9.2 Support Vector Classifiers
	9.2.1 Overview of the Support Vector Classifier
	9.2.2 Details of the Support Vector Classifier

	9.3 Support Vector Machines
	9.3.1 Classification with Non-Linear Decision Boundaries
	9.3.2 The Support Vector Machine
	9.3.3 An Application to the Heart Disease Data

	9.4 SVMs with More than Two Classes
	9.4.1 One-Versus-One Classification
	9.4.2 One-Versus-All Classification

	9.5 Relationship to Logistic Regression
	9.6 Lab: Support Vector Machines
	9.6.1 Support Vector Classifier
	9.6.2 Support Vector Machine
	9.6.3 ROC Curves
	9.6.4 SVM with Multiple Classes
	9.6.5 Application to Gene Expression Data

	9.7 Exercises
	Conceptual
	Applied

	10 Deep Learning
	10.1 Single Layer Neural Networks
	10.2 Multilayer Neural Networks
	10.3 Convolutional Neural Networks
	10.3.1 Convolution Layers
	10.3.2 Pooling Layers
	10.3.3 Architecture of a Convolutional Neural Network
	10.3.4 Data Augmentation
	10.3.5 Results Using a Pretrained Classifier

	10.4 Document Classification
	10.5 Recurrent Neural Networks
	10.5.1 Sequential Models for Document Classification
	10.5.2 Time Series Forecasting
	10.5.3 Summary of RNNs

	10.6 When to Use Deep Learning
	10.7 Fitting a Neural Network
	10.7.1 Backpropagation
	10.7.2 Regularization and Stochastic Gradient Descent
	10.7.3 Dropout Learning
	10.7.4 Network Tuning

	10.8 Interpolation and Double Descent
	10.9 Lab: Deep Learning
	10.9.1 Single Layer Network on Hitters Data
	10.9.2 Multilayer Network on the MNIST Digit Data
	10.9.3 Convolutional Neural Networks
	10.9.4 Using Pretrained CNN Models
	10.9.5 IMDB Document Classification
	10.9.6 Recurrent Neural Networks

	10.10 Exercises
	Conceptual
	Applied

	11 Survival Analysis and Censored Data
	11.1 Survival and Censoring Times
	11.2 A Closer Look at Censoring
	11.3 The Kaplan–Meier Survival Curve
	11.4 The Log-Rank Test
	11.5 Regression Models With a Survival Response
	11.5.1 The Hazard Function
	11.5.2 Proportional Hazards
	11.5.3 Example: Brain Cancer Data
	11.5.4 Example: Publication Data

	11.6 Shrinkage for the Cox Model
	11.7 Additional Topics
	11.7.1 Area Under the Curve for Survival Analysis
	11.7.2 Choice of Time Scale
	11.7.3 Time-Dependent Covariates
	11.7.4 Checking the Proportional Hazards Assumption
	11.7.5 Survival Trees

	11.8 Lab: Survival Analysis
	11.8.1 Brain Cancer Data
	11.8.2 Publication Data
	11.8.3 Call Center Data

	11.9 Exercises
	Conceptual
	Applied

	12 Unsupervised Learning
	12.1 The Challenge of Unsupervised Learning
	12.2 Principal Components Analysis
	12.2.1 What Are Principal Components?
	12.2.2 Another Interpretation of Principal Components
	12.2.3 The Proportion of Variance Explained
	12.2.4 More on PCA
	12.2.5 Other Uses for Principal Components

	12.3 Missing Values and Matrix Completion
	12.4 Clustering Methods
	12.4.1 K-Means Clustering
	12.4.2 Hierarchical Clustering
	12.4.3 Practical Issues in Clustering

	12.5 Lab: Unsupervised Learning
	12.5.1 Principal Components Analysis
	12.5.2 Matrix Completion
	12.5.3 Clustering
	12.5.4 NCI60 Data Example

	12.6 Exercises
	Conceptual
	Applied

	13 Multiple Testing
	13.1 A Quick Review of Hypothesis Testing
	13.1.1 Testing a Hypothesis
	13.1.2 Type I and Type II Errors

	13.2 The Challenge of Multiple Testing
	13.3 The Family-Wise Error Rate
	13.3.1 What is the Family-Wise Error Rate?
	13.3.2 Approaches to Control the Family-Wise Error Rate
	13.3.3 Trade-Off Between the FWER and Power

	13.4 The False Discovery Rate
	13.4.1 Intuition for the False Discovery Rate
	13.4.2 The Benjamini–Hochberg Procedure

	13.5 A Re-Sampling Approach to p-Values and False Discovery Rates
	13.5.1 A Re-Sampling Approach to the p-Value
	13.5.2 A Re-Sampling Approach to the False Discovery Rate
	13.5.3 When Are Re-Sampling Approaches Useful?

	13.6 Lab: Multiple Testing
	13.6.1 Review of Hypothesis Tests
	13.6.2 Family-Wise Error Rate
	13.6.3 False Discovery Rate
	13.6.4 A Re-Sampling Approach

	13.7 Exercises
	Conceptual
	Applied

	Index

