
8
Tree-Based Methods

In this chapter, we describe tree-based methods for regression and classifi-
cation. These involve stratifying or segmenting the predictor space into a
number of simple regions. In order to make a prediction for a given ob-
servation, we typically use the mean or the mode response value for the
training observations in the region to which it belongs. Since the set of
splitting rules used to segment the predictor space can be summarized in
a tree, these types of approaches are known as decision tree methods. decision treeTree-based methods are simple and useful for interpretation. However,
they typically are not competitive with the best supervised learning ap-
proaches, such as those seen in Chapters 6 and 7, in terms of prediction
accuracy. Hence in this chapter we also introduce bagging, random forests,
boosting, and Bayesian additive regression trees. Each of these approaches
involves producing multiple trees which are then combined to yield a single
consensus prediction. We will see that combining a large number of trees
can often result in dramatic improvements in prediction accuracy, at the
expense of some loss in interpretation.

8.1 The Basics of Decision Trees
Decision trees can be applied to both regression and classification problems.
We first consider regression problems, and then move on to classification.

8.1.1 Regression Trees
In order to motivate regression trees, we begin with a simple example. regression

tree

© Springer Nature Switzerland AG 2023
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-031-38747-0_8

331

https://doi.org/10.1007/978-3-031-38747-0_8
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38747-0_8&domain=pdf

332 8. Tree-Based Methods

|Years < 4.5

Hits < 117.5
5.11

6.00 6.74

FIGURE 8.1. For the Hitters data, a regression tree for predicting the log
salary of a baseball player, based on the number of years that he has played in
the major leagues and the number of hits that he made in the previous year. At a
given internal node, the label (of the form Xj < tk) indicates the left-hand branch
emanating from that split, and the right-hand branch corresponds to Xj ≥ tk.
For instance, the split at the top of the tree results in two large branches. The
left-hand branch corresponds to Years<4.5, and the right-hand branch corresponds
to Years>=4.5. The tree has two internal nodes and three terminal nodes, or
leaves. The number in each leaf is the mean of the response for the observations
that fall there.

Predicting Baseball Players’ Salaries Using Regression Trees
We use the Hitters data set to predict a baseball player’s Salary based on
Years (the number of years that he has played in the major leagues) and
Hits (the number of hits that he made in the previous year). We first remove
observations that are missing Salary values, and log-transform Salary so
that its distribution has more of a typical bell-shape. (Recall that Salary
is measured in thousands of dollars.)

Figure 8.1 shows a regression tree fit to this data. It consists of a series
of splitting rules, starting at the top of the tree. The top split assigns
observations having Years<4.5 to the left branch.1 The predicted salary
for these players is given by the mean response value for the players in
the data set with Years<4.5. For such players, the mean log salary is 5.107,
and so we make a prediction of e5.107 thousands of dollars, i.e. $165,174, for
these players. Players with Years>=4.5 are assigned to the right branch, and
then that group is further subdivided by Hits. Overall, the tree stratifies
or segments the players into three regions of predictor space: players who
have played for four or fewer years, players who have played for five or more
years and who made fewer than 118 hits last year, and players who have
played for five or more years and who made at least 118 hits last year. These
three regions can be written as R1 ={X | Years<4.5}, R2 ={X | Years>=4.5,
Hits<117.5}, and R3 ={X | Years>=4.5, Hits>=117.5}. Figure 8.2 illustrates

1Both Years and Hits are integers in these data; the function used to fit this tree
labels the splits at the midpoint between two adjacent values.

8.1 The Basics of Decision Trees 333

Years

H
its

1

117.5

238

1 4.5 24

R1

R3

R2

FIGURE 8.2. The three-region partition for the Hitters data set from the
regression tree illustrated in Figure 8.1.

the regions as a function of Years and Hits. The predicted salaries for these
three groups are $1,000×e5.107 =$165,174, $1,000×e5.999 =$402,834, and
$1,000×e6.740 =$845,346 respectively.

In keeping with the tree analogy, the regions R1, R2, and R3 are known as
terminal nodes or leaves of the tree. As is the case for Figure 8.1, decision terminal

node
leaf

trees are typically drawn upside down, in the sense that the leaves are at
the bottom of the tree. The points along the tree where the predictor space
is split are referred to as internal nodes. In Figure 8.1, the two internal internal

nodenodes are indicated by the text Years<4.5 and Hits<117.5. We refer to the
segments of the trees that connect the nodes as branches. branchWe might interpret the regression tree displayed in Figure 8.1 as follows:
Years is the most important factor in determining Salary, and players with
less experience earn lower salaries than more experienced players. Given
that a player is less experienced, the number of hits that he made in the
previous year seems to play little role in his salary. But among players who
have been in the major leagues for five or more years, the number of hits
made in the previous year does affect salary, and players who made more
hits last year tend to have higher salaries. The regression tree shown in
Figure 8.1 is likely an over-simplification of the true relationship between
Hits, Years, and Salary. However, it has advantages over other types of
regression models (such as those seen in Chapters 3 and 6): it is easier to
interpret, and has a nice graphical representation.

Prediction via Stratification of the Feature Space
We now discuss the process of building a regression tree. Roughly speaking,
there are two steps.

1. We divide the predictor space — that is, the set of possible values
for X1, X2, . . . , Xp — into J distinct and non-overlapping regions,
R1, R2, . . . , RJ .

334 8. Tree-Based Methods

2. For every observation that falls into the region Rj , we make the same
prediction, which is simply the mean of the response values for the
training observations in Rj .

For instance, suppose that in Step 1 we obtain two regions, R1 and R2,
and that the response mean of the training observations in the first region
is 10, while the response mean of the training observations in the second
region is 20. Then for a given observation X = x, if x ∈ R1 we will predict
a value of 10, and if x ∈ R2 we will predict a value of 20.

We now elaborate on Step 1 above. How do we construct the regions
R1, . . . , RJ? In theory, the regions could have any shape. However, we
choose to divide the predictor space into high-dimensional rectangles, or
boxes, for simplicity and for ease of interpretation of the resulting predic-
tive model. The goal is to find boxes R1, . . . , RJ that minimize the RSS,
given by

J∑

j=1

∑

i∈Rj

(yi − ŷRj
)2, (8.1)

where ŷRj
is the mean response for the training observations within the

jth box. Unfortunately, it is computationally infeasible to consider every
possible partition of the feature space into J boxes. For this reason, we take
a top-down, greedy approach that is known as recursive binary splitting. The recursive

binary
splitting

approach is top-down because it begins at the top of the tree (at which point
all observations belong to a single region) and then successively splits the
predictor space; each split is indicated via two new branches further down
on the tree. It is greedy because at each step of the tree-building process,
the best split is made at that particular step, rather than looking ahead
and picking a split that will lead to a better tree in some future step.

In order to perform recursive binary splitting, we first select the pre-
dictor Xj and the cutpoint s such that splitting the predictor space into
the regions {X|Xj < s} and {X|Xj ≥ s} leads to the greatest possible
reduction in RSS. (The notation {X|Xj < s} means the region of predictor
space in which Xj takes on a value less than s.) That is, we consider all
predictors X1, . . . , Xp, and all possible values of the cutpoint s for each of
the predictors, and then choose the predictor and cutpoint such that the
resulting tree has the lowest RSS. In greater detail, for any j and s, we
define the pair of half-planes

R1(j, s) = {X|Xj < s} and R2(j, s) = {X|Xj ≥ s}, (8.2)

and we seek the value of j and s that minimize the equation
∑

i: xi∈R1(j,s)

(yi − ŷR1
)2 +

∑

i: xi∈R2(j,s)

(yi − ŷR2
)2, (8.3)

where ŷR1
is the mean response for the training observations in R1(j, s),

and ŷR2
is the mean response for the training observations in R2(j, s).

Finding the values of j and s that minimize (8.3) can be done quite quickly,
especially when the number of features p is not too large.

Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within

8.1 The Basics of Decision Trees 335

|

t1

t2

t3

t4

R1

R1

R2

R2

R3

R3

R4

R4

R5

R5

X1

X1X1

X2

X
2

X
2

X1 ≤ t1

X2 ≤ t2 X1 ≤ t3

X2 ≤ t4

FIGURE 8.3. Top Left: A partition of two-dimensional feature space that could
not result from recursive binary splitting. Top Right: The output of recursive
binary splitting on a two-dimensional example. Bottom Left: A tree corresponding
to the partition in the top right panel. Bottom Right: A perspective plot of the
prediction surface corresponding to that tree.

each of the resulting regions. However, this time, instead of splitting the
entire predictor space, we split one of the two previously identified regions.
We now have three regions. Again, we look to split one of these three regions
further, so as to minimize the RSS. The process continues until a stopping
criterion is reached; for instance, we may continue until no region contains
more than five observations.

Once the regions R1, . . . , RJ have been created, we predict the response
for a given test observation using the mean of the training observations in
the region to which that test observation belongs.

A five-region example of this approach is shown in Figure 8.3.

Tree Pruning
The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.
This is because the resulting tree might be too complex. A smaller tree

336 8. Tree-Based Methods

with fewer splits (that is, fewer regions R1, . . . , RJ) might lead to lower
variance and better interpretation at the cost of a little bias. One possible
alternative to the process described above is to build the tree only so long
as the decrease in the RSS due to each split exceeds some (high) threshold.
This strategy will result in smaller trees, but is too short-sighted since a
seemingly worthless split early on in the tree might be followed by a very
good split—that is, a split that leads to a large reduction in RSS later on.

Therefore, a better strategy is to grow a very large tree T0, and then
prune it back in order to obtain a subtree. How do we determine the best prune

subtreeway to prune the tree? Intuitively, our goal is to select a subtree that
leads to the lowest test error rate. Given a subtree, we can estimate its
test error using cross-validation or the validation set approach. However,
estimating the cross-validation error for every possible subtree would be too
cumbersome, since there is an extremely large number of possible subtrees.
Instead, we need a way to select a small set of subtrees for consideration.

Cost complexity pruning—also known as weakest link pruning—gives us cost
complexity
pruning
weakest link
pruning

a way to do just this. Rather than considering every possible subtree, we
consider a sequence of trees indexed by a nonnegative tuning parameter α.
For each value of α there corresponds a subtree T ⊂ T0 such that

|T |∑

m=1

∑

i: xi∈Rm

(yi − ŷRm)2 + α|T | (8.4)

is as small as possible. Here |T | indicates the number of terminal nodes
of the tree T , Rm is the rectangle (i.e. the subset of predictor space) cor-
responding to the mth terminal node, and ŷRm is the predicted response
associated with Rm—that is, the mean of the training observations in Rm.
The tuning parameter α controls a trade-off between the subtree’s com-
plexity and its fit to the training data. When α = 0, then the subtree T
will simply equal T0, because then (8.4) just measures the training error.
However, as α increases, there is a price to pay for having a tree with
many terminal nodes, and so the quantity (8.4) will tend to be minimized
for a smaller subtree. Equation 8.4 is reminiscent of the lasso (6.7) from
Chapter 6, in which a similar formulation was used in order to control the
complexity of a linear model.

It turns out that as we increase α from zero in (8.4), branches get pruned
from the tree in a nested and predictable fashion, so obtaining the whole
sequence of subtrees as a function of α is easy. We can select a value of
α using a validation set or using cross-validation. We then return to the
full data set and obtain the subtree corresponding to α. This process is
summarized in Algorithm 8.1.

Figures 8.4 and 8.5 display the results of fitting and pruning a regression
tree on the Hitters data, using nine of the features. First, we randomly
divided the data set in half, yielding 132 observations in the training set
and 131 observations in the test set. We then built a large regression tree
on the training data and varied α in (8.4) in order to create subtrees with
different numbers of terminal nodes. Finally, we performed six-fold cross-
validation in order to estimate the cross-validated MSE of the trees as

8.1 The Basics of Decision Trees 337

Algorithm 8.1 Building a Regression Tree
1. Use recursive binary splitting to grow a large tree on the training

data, stopping only when each terminal node has fewer than some
minimum number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of α.

3. Use K-fold cross-validation to choose α. That is, divide the training
observations into K folds. For each k = 1, . . . ,K:
(a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
(b) Evaluate the mean squared prediction error on the data in the
left-out kth fold, as a function of α.
Average the results for each value of α, and pick α to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value
of α.

a function of α. (We chose to perform six-fold cross-validation because
132 is an exact multiple of six.) The unpruned regression tree is shown
in Figure 8.4. The green curve in Figure 8.5 shows the CV error as a
function of the number of leaves,2 while the orange curve indicates the
test error. Also shown are standard error bars around the estimated errors.
For reference, the training error curve is shown in black. The CV error
is a reasonable approximation of the test error: the CV error takes on its
minimum for a three-node tree, while the test error also dips down at the
three-node tree (though it takes on its lowest value at the ten-node tree).
The pruned tree containing three terminal nodes is shown in Figure 8.1.

8.1.2 Classification Trees
A classification tree is very similar to a regression tree, except that it is classification

treeused to predict a qualitative response rather than a quantitative one. Re-
call that for a regression tree, the predicted response for an observation is
given by the mean response of the training observations that belong to the
same terminal node. In contrast, for a classification tree, we predict that
each observation belongs to the most commonly occurring class of training
observations in the region to which it belongs. In interpreting the results of
a classification tree, we are often interested not only in the class prediction
corresponding to a particular terminal node region, but also in the class
proportions among the training observations that fall into that region.

The task of growing a classification tree is quite similar to the task of
growing a regression tree. Just as in the regression setting, we use recursive

2Although CV error is computed as a function of α, it is convenient to display the
result as a function of |T |, the number of leaves; this is based on the relationship between
α and |T | in the original tree grown to all the training data.

338 8. Tree-Based Methods

|Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5
Runs < 47.5

Walks < 52.5

RBI < 80.5
Years < 6.5

5.487
4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

FIGURE 8.4. Regression tree analysis for the Hitters data. The unpruned tree
that results from top-down greedy splitting on the training data is shown.

binary splitting to grow a classification tree. However, in the classification
setting, RSS cannot be used as a criterion for making the binary splits.
A natural alternative to RSS is the classification error rate. Since we plan classification

error rateto assign an observation in a given region to the most commonly occurring
class of training observations in that region, the classification error rate is
simply the fraction of the training observations in that region that do not
belong to the most common class:

E = 1−max
k

(p̂mk). (8.5)

Here p̂mk represents the proportion of training observations in the mth
region that are from the kth class. However, it turns out that classification
error is not sufficiently sensitive for tree-growing, and in practice two other
measures are preferable.

The Gini index is defined by Gini index

G =
K∑

k=1

p̂mk(1− p̂mk), (8.6)

a measure of total variance across the K classes. It is not hard to see
that the Gini index takes on a small value if all of the p̂mk’s are close to
zero or one. For this reason the Gini index is referred to as a measure of

8.1 The Basics of Decision Trees 339

2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Tree Size

M
ea

n
Sq

ua
re

d
Er

ro
r

Training
Cross−Validation
Test

FIGURE 8.5. Regression tree analysis for the Hitters data. The training,
cross-validation, and test MSE are shown as a function of the number of terminal
nodes in the pruned tree. Standard error bands are displayed. The minimum
cross-validation error occurs at a tree size of three.

node purity—a small value indicates that a node contains predominantly
observations from a single class.

An alternative to the Gini index is entropy, given by entropy

D = −
K∑

k=1

p̂mk log p̂mk. (8.7)

Since 0 ≤ p̂mk ≤ 1, it follows that 0 ≤ −p̂mk log p̂mk. One can show that
the entropy will take on a value near zero if the p̂mk’s are all near zero or
near one. Therefore, like the Gini index, the entropy will take on a small
value if the mth node is pure. In fact, it turns out that the Gini index and
the entropy are quite similar numerically.

When building a classification tree, either the Gini index or the entropy
are typically used to evaluate the quality of a particular split, since these
two approaches are more sensitive to node purity than is the classification
error rate. Any of these three approaches might be used when pruning the
tree, but the classification error rate is preferable if prediction accuracy of
the final pruned tree is the goal.

Figure 8.6 shows an example on the Heart data set. These data con-
tain a binary outcome HD for 303 patients who presented with chest pain.
An outcome value of Yes indicates the presence of heart disease based on
an angiographic test, while No means no heart disease. There are 13 predic-
tors including Age, Sex, Chol (a cholesterol measurement), and other heart
and lung function measurements. Cross-validation results in a tree with six
terminal nodes.

In our discussion thus far, we have assumed that the predictor vari-
ables take on continuous values. However, decision trees can be constructed
even in the presence of qualitative predictor variables. For instance, in the
Heart data, some of the predictors, such as Sex, Thal (Thallium stress test),

340 8. Tree-Based Methods

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157
Chol < 244

MaxHR < 156
MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b
ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes
Yes

5 10 15

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Tree Size

Er
ro

r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5

MaxHR < 161.5 ChestPain:bc

Ca < 0.5

No No

No Yes

Yes Yes

FIGURE 8.6. Heart data. Top: The unpruned tree. Bottom Left: Cross-valida-
tion error, training, and test error, for different sizes of the pruned tree. Bottom
Right: The pruned tree corresponding to the minimal cross-validation error.

and ChestPain, are qualitative. Therefore, a split on one of these variables
amounts to assigning some of the qualitative values to one branch and
assigning the remaining to the other branch. In Figure 8.6, some of the in-
ternal nodes correspond to splitting qualitative variables. For instance, the
top internal node corresponds to splitting Thal. The text Thal:a indicates
that the left-hand branch coming out of that node consists of observations
with the first value of the Thal variable (normal), and the right-hand node
consists of the remaining observations (fixed or reversible defects). The text
ChestPain:bc two splits down the tree on the left indicates that the left-hand
branch coming out of that node consists of observations with the second
and third values of the ChestPain variable, where the possible values are
typical angina, atypical angina, non-anginal pain, and asymptomatic.

Figure 8.6 has a surprising characteristic: some of the splits yield two
terminal nodes that have the same predicted value. For instance, consider
the split RestECG<1 near the bottom right of the unpruned tree. Regardless
of the value of RestECG, a response value of Yes is predicted for those ob-

8.1 The Basics of Decision Trees 341

servations. Why, then, is the split performed at all? The split is performed
because it leads to increased node purity. That is, all 9 of the observations
corresponding to the right-hand leaf have a response value of Yes, whereas
7/11 of those corresponding to the left-hand leaf have a response value of
Yes. Why is node purity important? Suppose that we have a test obser-
vation that belongs to the region given by that right-hand leaf. Then we
can be pretty certain that its response value is Yes. In contrast, if a test
observation belongs to the region given by the left-hand leaf, then its re-
sponse value is probably Yes, but we are much less certain. Even though
the split RestECG<1 does not reduce the classification error, it improves the
Gini index and the entropy, which are more sensitive to node purity.

8.1.3 Trees Versus Linear Models
Regression and classification trees have a very different flavor from the more
classical approaches for regression and classification presented in Chapters 3
and 4. In particular, linear regression assumes a model of the form

f(X) = β0 +
p∑

j=1

Xjβj , (8.8)

whereas regression trees assume a model of the form

f(X) =
M∑

m=1

cm · 1(X∈Rm) (8.9)

where R1, . . . , RM represent a partition of feature space, as in Figure 8.3.
Which model is better? It depends on the problem at hand. If the re-

lationship between the features and the response is well approximated by
a linear model as in (8.8), then an approach such as linear regression will
likely work well, and will outperform a method such as a regression tree
that does not exploit this linear structure. If instead there is a highly non-
linear and complex relationship between the features and the response as
indicated by model (8.9), then decision trees may outperform classical ap-
proaches. An illustrative example is displayed in Figure 8.7. The relative
performances of tree-based and classical approaches can be assessed by es-
timating the test error, using either cross-validation or the validation set
approach (Chapter 5).

Of course, other considerations beyond simply test error may come into
play in selecting a statistical learning method; for instance, in certain set-
tings, prediction using a tree may be preferred for the sake of interpretabil-
ity and visualization.

8.1.4 Advantages and Disadvantages of Trees
Decision trees for regression and classification have a number of advantages
over the more classical approaches seen in Chapters 3 and 4:

! Trees are very easy to explain to people. In fact, they are even easier
to explain than linear regression!

342 8. Tree-Based Methods

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

−2 −1 0 1 2

−2
−1

0
1

2

X1

X 2

FIGURE 8.7. Top Row: A two-dimensional classification example in which the
true decision boundary is linear, and is indicated by the shaded regions. A classical
approach that assumes a linear boundary (left) will outperform a decision tree
that performs splits parallel to the axes (right). Bottom Row: Here the true de-
cision boundary is non-linear. Here a linear model is unable to capture the true
decision boundary (left), whereas a decision tree is successful (right).

! Some people believe that decision trees more closely mirror human
decision-making than do the regression and classification approaches
seen in previous chapters.

! Trees can be displayed graphically, and are easily interpreted even by
a non-expert (especially if they are small).

! Trees can easily handle qualitative predictors without the need to
create dummy variables.

" Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
seen in this book.

" Additionally, trees can be very non-robust. In other words, a small
change in the data can cause a large change in the final estimated
tree.

However, by aggregating many decision trees, using methods like bagging,
random forests, and boosting, the predictive performance of trees can be
substantially improved. We introduce these concepts in the next section.

	Preface
	Contents
	1 Introduction
	An Overview of Statistical Learning
	Wage Data
	Stock Market Data
	Gene Expression Data

	A Brief History of Statistical Learning
	This Book
	Who Should Read This Book?
	Notation and Simple Matrix Algebra
	Organization of This Book
	Data Sets Used in Labs and Exercises
	Book Website
	Acknowledgements

	2 Statistical Learning
	2.1 What Is Statistical Learning?
	2.1.1 Why Estimate f?
	2.1.2 How Do We Estimate f?
	2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability
	2.1.4 Supervised Versus Unsupervised Learning
	2.1.5 Regression Versus Classification Problems

	2.2 Assessing Model Accuracy
	2.2.1 Measuring the Quality of Fit
	2.2.2 The Bias-Variance Trade-Off
	2.2.3 The Classification Setting

	2.3 Lab: Introduction to Python
	2.3.1 Getting Started
	2.3.2 Basic Commands
	2.3.3 Introduction to Numerical Python
	2.3.4 Graphics
	2.3.5 Sequences and Slice Notation
	2.3.6 Indexing Data
	2.3.7 Loading Data
	2.3.8 For Loops
	2.3.9 Additional Graphical and Numerical Summaries

	2.4 Exercises
	Conceptual
	Applied

	3 Linear Regression
	3.1 Simple Linear Regression
	3.1.1 Estimating the Coefficients
	3.1.2 Assessing the Accuracy of the Coefficient Estimates
	3.1.3 Assessing the Accuracy of the Model

	3.2 Multiple Linear Regression
	3.2.1 Estimating the Regression Coefficients
	3.2.2 Some Important Questions

	3.3 Other Considerations in the Regression Model
	3.3.1 Qualitative Predictors
	3.3.2 Extensions of the Linear Model
	3.3.3 Potential Problems

	3.4 The Marketing Plan
	3.5 Comparison of Linear Regression with K-Nearest Neighbors
	3.6 Lab: Linear Regression
	3.6.1 Importing packages
	3.6.2 Simple Linear Regression
	3.6.3 Multiple Linear Regression
	3.6.4 Multivariate Goodness of Fit
	3.6.5 Interaction Terms
	3.6.6 Non-linear Transformations of the Predictors
	3.6.7 Qualitative Predictors

	3.7 Exercises
	Conceptual
	Applied

	4 Classification
	4.1 An Overview of Classification
	4.2 Why Not Linear Regression?
	4.3 Logistic Regression
	4.3.1 The Logistic Model
	4.3.2 Estimating the Regression Coefficients
	4.3.3 Making Predictions
	4.3.4 Multiple Logistic Regression
	4.3.5 Multinomial Logistic Regression

	4.4 Generative Models for Classification
	4.4.1 Linear Discriminant Analysis for p = 1
	4.4.2 Linear Discriminant Analysis for p >1
	4.4.3 Quadratic Discriminant Analysis
	4.4.4 Naive Bayes

	4.5 A Comparison of Classification Methods
	4.5.1 An Analytical Comparison
	4.5.2 An Empirical Comparison

	4.6 Generalized Linear Models
	4.6.1 Linear Regression on the Bikeshare Data
	4.6.2 Poisson Regression on the Bikeshare Data
	4.6.3 Generalized Linear Models in Greater Generality

	4.7 Lab: Logistic Regression, LDA, QDA, and KNN
	4.7.1 The Stock Market Data
	4.7.2 Logistic Regression
	4.7.3 Linear Discriminant Analysis
	4.7.4 Quadratic Discriminant Analysis
	4.7.5 Naive Bayes
	4.7.6 K-Nearest Neighbors
	4.7.7 Linear and Poisson Regression on the Bikeshare Data

	4.8 Exercises
	Conceptual
	Applied

	5 Resampling Methods
	5.1 Cross-Validation
	5.1.1 The Validation Set Approach
	5.1.2 Leave-One-Out Cross-Validation
	5.1.3 k-Fold Cross-Validation
	5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation
	5.1.5 Cross-Validation on Classification Problems

	5.2 The Bootstrap
	5.3 Lab: Cross-Validation and the Bootstrap
	5.3.1 The Validation Set Approach
	5.3.2 Cross-Validation
	5.3.3 The Bootstrap

	5.4 Exercises
	Conceptual
	Applied

	6 Linear Model Selection and Regularization
	6.1 Subset Selection
	6.1.1 Best Subset Selection
	6.1.2 Stepwise Selection
	6.1.3 Choosing the Optimal Model

	6.2 Shrinkage Methods
	6.2.1 Ridge Regression
	6.2.2 The Lasso
	6.2.3 Selecting the Tuning Parameter

	6.3 Dimension Reduction Methods
	6.3.1 Principal Components Regression
	6.3.2 Partial Least Squares

	6.4 Considerations in High Dimensions
	6.4.1 High-Dimensional Data
	6.4.2 What Goes Wrong in High Dimensions?
	6.4.3 Regression in High Dimensions
	6.4.4 Interpreting Results in High Dimensions

	6.5 Lab: Linear Models and Regularization Methods
	6.5.1 Subset Selection Methods
	6.5.2 Ridge Regression and the Lasso
	6.5.3 PCR and PLS Regression

	6.6 Exercises
	Conceptual
	Applied

	7 Moving Beyond Linearity
	7.1 Polynomial Regression
	7.2 Step Functions
	7.3 Basis Functions
	7.4 Regression Splines
	7.4.1 Piecewise Polynomials
	7.4.2 Constraints and Splines
	7.4.3 The Spline Basis Representation
	7.4.4 Choosing the Number and Locations of the Knots
	7.4.5 Comparison to Polynomial Regression

	7.5 Smoothing Splines
	7.5.1 An Overview of Smoothing Splines
	7.5.2 Choosing the Smoothing Parameter λ

	7.6 Local Regression
	7.7 Generalized Additive Models
	7.7.1 GAMs for Regression Problems
	7.7.2 GAMs for Classification Problems

	7.8 Lab: Non-Linear Modeling
	7.8.1 Polynomial Regression and Step Functions
	7.8.2 Splines
	7.8.3 Smoothing Splines and GAMs
	7.8.4 Local Regression

	7.9 Exercises
	Conceptual
	Applied

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees
	8.2.1 Bagging
	8.2.2 Random Forests
	8.2.3 Boosting
	8.2.4 Bayesian Additive Regression Trees
	8.2.5 Summary of Tree Ensemble Methods

	8.3 Lab: Tree-Based Methods
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting
	8.3.5 Bayesian Additive Regression Trees

	8.4 Exercises
	Conceptual
	Applied

	9 Support Vector Machines
	9.1 Maximal Margin Classifier
	9.1.1 What Is a Hyperplane?
	9.1.2 Classification Using a Separating Hyperplane
	9.1.3 The Maximal Margin Classifier
	9.1.4 Construction of the Maximal Margin Classifier
	9.1.5 The Non-separable Case

	9.2 Support Vector Classifiers
	9.2.1 Overview of the Support Vector Classifier
	9.2.2 Details of the Support Vector Classifier

	9.3 Support Vector Machines
	9.3.1 Classification with Non-Linear Decision Boundaries
	9.3.2 The Support Vector Machine
	9.3.3 An Application to the Heart Disease Data

	9.4 SVMs with More than Two Classes
	9.4.1 One-Versus-One Classification
	9.4.2 One-Versus-All Classification

	9.5 Relationship to Logistic Regression
	9.6 Lab: Support Vector Machines
	9.6.1 Support Vector Classifier
	9.6.2 Support Vector Machine
	9.6.3 ROC Curves
	9.6.4 SVM with Multiple Classes
	9.6.5 Application to Gene Expression Data

	9.7 Exercises
	Conceptual
	Applied

	10 Deep Learning
	10.1 Single Layer Neural Networks
	10.2 Multilayer Neural Networks
	10.3 Convolutional Neural Networks
	10.3.1 Convolution Layers
	10.3.2 Pooling Layers
	10.3.3 Architecture of a Convolutional Neural Network
	10.3.4 Data Augmentation
	10.3.5 Results Using a Pretrained Classifier

	10.4 Document Classification
	10.5 Recurrent Neural Networks
	10.5.1 Sequential Models for Document Classification
	10.5.2 Time Series Forecasting
	10.5.3 Summary of RNNs

	10.6 When to Use Deep Learning
	10.7 Fitting a Neural Network
	10.7.1 Backpropagation
	10.7.2 Regularization and Stochastic Gradient Descent
	10.7.3 Dropout Learning
	10.7.4 Network Tuning

	10.8 Interpolation and Double Descent
	10.9 Lab: Deep Learning
	10.9.1 Single Layer Network on Hitters Data
	10.9.2 Multilayer Network on the MNIST Digit Data
	10.9.3 Convolutional Neural Networks
	10.9.4 Using Pretrained CNN Models
	10.9.5 IMDB Document Classification
	10.9.6 Recurrent Neural Networks

	10.10 Exercises
	Conceptual
	Applied

	11 Survival Analysis and Censored Data
	11.1 Survival and Censoring Times
	11.2 A Closer Look at Censoring
	11.3 The Kaplan–Meier Survival Curve
	11.4 The Log-Rank Test
	11.5 Regression Models With a Survival Response
	11.5.1 The Hazard Function
	11.5.2 Proportional Hazards
	11.5.3 Example: Brain Cancer Data
	11.5.4 Example: Publication Data

	11.6 Shrinkage for the Cox Model
	11.7 Additional Topics
	11.7.1 Area Under the Curve for Survival Analysis
	11.7.2 Choice of Time Scale
	11.7.3 Time-Dependent Covariates
	11.7.4 Checking the Proportional Hazards Assumption
	11.7.5 Survival Trees

	11.8 Lab: Survival Analysis
	11.8.1 Brain Cancer Data
	11.8.2 Publication Data
	11.8.3 Call Center Data

	11.9 Exercises
	Conceptual
	Applied

	12 Unsupervised Learning
	12.1 The Challenge of Unsupervised Learning
	12.2 Principal Components Analysis
	12.2.1 What Are Principal Components?
	12.2.2 Another Interpretation of Principal Components
	12.2.3 The Proportion of Variance Explained
	12.2.4 More on PCA
	12.2.5 Other Uses for Principal Components

	12.3 Missing Values and Matrix Completion
	12.4 Clustering Methods
	12.4.1 K-Means Clustering
	12.4.2 Hierarchical Clustering
	12.4.3 Practical Issues in Clustering

	12.5 Lab: Unsupervised Learning
	12.5.1 Principal Components Analysis
	12.5.2 Matrix Completion
	12.5.3 Clustering
	12.5.4 NCI60 Data Example

	12.6 Exercises
	Conceptual
	Applied

	13 Multiple Testing
	13.1 A Quick Review of Hypothesis Testing
	13.1.1 Testing a Hypothesis
	13.1.2 Type I and Type II Errors

	13.2 The Challenge of Multiple Testing
	13.3 The Family-Wise Error Rate
	13.3.1 What is the Family-Wise Error Rate?
	13.3.2 Approaches to Control the Family-Wise Error Rate
	13.3.3 Trade-Off Between the FWER and Power

	13.4 The False Discovery Rate
	13.4.1 Intuition for the False Discovery Rate
	13.4.2 The Benjamini–Hochberg Procedure

	13.5 A Re-Sampling Approach to p-Values and False Discovery Rates
	13.5.1 A Re-Sampling Approach to the p-Value
	13.5.2 A Re-Sampling Approach to the False Discovery Rate
	13.5.3 When Are Re-Sampling Approaches Useful?

	13.6 Lab: Multiple Testing
	13.6.1 Review of Hypothesis Tests
	13.6.2 Family-Wise Error Rate
	13.6.3 False Discovery Rate
	13.6.4 A Re-Sampling Approach

	13.7 Exercises
	Conceptual
	Applied

	Index

