
7
Moving Beyond Linearity

So far in this book, we have mostly focused on linear models. Linear models
are relatively simple to describe and implement, and have advantages over
other approaches in terms of interpretation and inference. However, stan-
dard linear regression can have significant limitations in terms of predic-
tive power. This is because the linearity assumption is almost always an
approximation, and sometimes a poor one. In Chapter 6 we see that we can
improve upon least squares using ridge regression, the lasso, principal com-
ponents regression, and other techniques. In that setting, the improvement
is obtained by reducing the complexity of the linear model, and hence the
variance of the estimates. But we are still using a linear model, which can
only be improved so far! In this chapter we relax the linearity assumption
while still attempting to maintain as much interpretability as possible. We
do this by examining very simple extensions of linear models like polyno-
mial regression and step functions, as well as more sophisticated approaches
such as splines, local regression, and generalized additive models.

• Polynomial regression extends the linear model by adding extra pre-
dictors, obtained by raising each of the original predictors to a power.
For example, a cubic regression uses three variables, X, X2, and X3,
as predictors. This approach provides a simple way to provide a non-
linear fit to data.

• Step functions cut the range of a variable into K distinct regions in
order to produce a qualitative variable. This has the effect of fitting
a piecewise constant function.

• Regression splines are more flexible than polynomials and step func-
tions, and in fact are an extension of the two. They involve dividing
the range of X into K distinct regions. Within each region, a poly-
nomial function is fit to the data. However, these polynomials are
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290 7. Moving Beyond Linearity

constrained so that they join smoothly at the region boundaries, or
knots. Provided that the interval is divided into enough regions, this
can produce an extremely flexible fit.

• Smoothing splines are similar to regression splines, but arise in a
slightly different situation. Smoothing splines result from minimizing
a residual sum of squares criterion subject to a smoothness penalty.

• Local regression is similar to splines, but differs in an important way.
The regions are allowed to overlap, and indeed they do so in a very
smooth way.

• Generalized additive models allow us to extend the methods above to
deal with multiple predictors.

In Sections 7.1–7.6, we present a number of approaches for modeling the
relationship between a response Y and a single predictor X in a flexible
way. In Section 7.7, we show that these approaches can be seamlessly in-
tegrated in order to model a response Y as a function of several predictors
X1, . . . , Xp.

7.1 Polynomial Regression
Historically, the standard way to extend linear regression to settings in
which the relationship between the predictors and the response is non-
linear has been to replace the standard linear model

yi = β0 + β1xi + εi

with a polynomial function

yi = β0 + β1xi + β2x
2
i + β3x

3
i + · · ·+ βdx

d
i + εi, (7.1)

where εi is the error term. This approach is known as polynomial regression, polynomial
regressionand in fact we saw an example of this method in Section 3.3.2. For large

enough degree d, a polynomial regression allows us to produce an extremely
non-linear curve. Notice that the coefficients in (7.1) can be easily estimated
using least squares linear regression because this is just a standard linear
model with predictors xi, x2

i , x
3
i , . . . , x

d
i . Generally speaking, it is unusual

to use d greater than 3 or 4 because for large values of d, the polynomial
curve can become overly flexible and can take on some very strange shapes.
This is especially true near the boundary of the X variable.

The left-hand panel in Figure 7.1 is a plot of wage against age for the
Wage data set, which contains income and demographic information for
males who reside in the central Atlantic region of the United States. We
see the results of fitting a degree-4 polynomial using least squares (solid
blue curve). Even though this is a linear regression model like any other,
the individual coefficients are not of particular interest. Instead, we look at
the entire fitted function across a grid of 63 values for age from 18 to 80 in
order to understand the relationship between age and wage.
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FIGURE 7.1. The Wage data. Left: The solid blue curve is a degree-4 polynomial
of wage (in thousands of dollars) as a function of age, fit by least squares. The
dashed curves indicate an estimated 95 % confidence interval. Right: We model the
binary event wage>250 using logistic regression, again with a degree-4 polynomial.
The fitted posterior probability of wage exceeding $250,000 is shown in blue, along
with an estimated 95 % confidence interval.

In Figure 7.1, a pair of dashed curves accompanies the fit; these are (2×)
standard error curves. Let’s see how these arise. Suppose we have computed
the fit at a particular value of age, x0:

f̂(x0) = β̂0 + β̂1x0 + β̂2x
2
0 + β̂3x

3
0 + β̂4x

4
0. (7.2)

What is the variance of the fit, i.e. Varf̂(x0)? Least squares returns variance
estimates for each of the fitted coefficients β̂j , as well as the covariances
between pairs of coefficient estimates. We can use these to compute the
estimated variance of f̂(x0).1 The estimated pointwise standard error of
f̂(x0) is the square-root of this variance. This computation is repeated
at each reference point x0, and we plot the fitted curve, as well as twice
the standard error on either side of the fitted curve. We plot twice the
standard error because, for normally distributed error terms, this quantity
corresponds to an approximate 95 % confidence interval.

It seems like the wages in Figure 7.1 are from two distinct populations:
there appears to be a high earners group earning more than $250,000 per
annum, as well as a low earners group. We can treat wage as a binary
variable by splitting it into these two groups. Logistic regression can then
be used to predict this binary response, using polynomial functions of age

1If Ĉ is the 5 × 5 covariance matrix of the β̂j , and if "T0 = (1, x0, x2
0, x

3
0, x

4
0), then

Var[f̂(x0)] = "T0 Ĉ"0.
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as predictors. In other words, we fit the model

Pr(yi > 250|xi) =
exp(β0 + β1xi + β2x2

i + · · ·+ βdxd
i )

1 + exp(β0 + β1xi + β2x2
i + · · ·+ βdxd

i )
. (7.3)

The result is shown in the right-hand panel of Figure 7.1. The gray marks
on the top and bottom of the panel indicate the ages of the high earners
and the low earners. The solid blue curve indicates the fitted probabilities
of being a high earner, as a function of age. The estimated 95 % confidence
interval is shown as well. We see that here the confidence intervals are fairly
wide, especially on the right-hand side. Although the sample size for this
data set is substantial (n = 3,000), there are only 79 high earners, which
results in a high variance in the estimated coefficients and consequently
wide confidence intervals.

7.2 Step Functions
Using polynomial functions of the features as predictors in a linear model
imposes a global structure on the non-linear function of X. We can instead
use step functions in order to avoid imposing such a global structure. Here step

functionwe break the range of X into bins, and fit a different constant in each bin.
This amounts to converting a continuous variable into an ordered categorical
variable. ordered

categorical
variable

In greater detail, we create cutpoints c1, c2, . . . , cK in the range of X,
and then construct K + 1 new variables

C0(X) = I(X < c1),
C1(X) = I(c1 ≤ X < c2),
C2(X) = I(c2 ≤ X < c3),

...
CK−1(X) = I(cK−1 ≤ X < cK),
CK(X) = I(cK ≤ X),

(7.4)

where I(·) is an indicator function that returns a 1 if the condition is true, indicator
functionand returns a 0 otherwise. For example, I(cK ≤ X) equals 1 if cK ≤ X, and

equals 0 otherwise. These are sometimes called dummy variables. Notice
that for any value of X, C0(X) +C1(X) + · · ·+CK(X) = 1, since X must
be in exactly one of the K + 1 intervals. We then use least squares to fit a
linear model using C1(X), C2(X), . . . , CK(X) as predictors2:

yi = β0 + β1C1(xi) + β2C2(xi) + · · ·+ βKCK(xi) + εi. (7.5)

For a given value of X, at most one of C1, C2, . . . , CK can be non-zero.
Note that when X < c1, all of the predictors in (7.5) are zero, so β0 can

2We exclude C0(X) as a predictor in (7.5) because it is redundant with the intercept.
This is similar to the fact that we need only two dummy variables to code a qualitative
variable with three levels, provided that the model will contain an intercept. The decision
to exclude C0(X) instead of some other Ck(X) in (7.5) is arbitrary. Alternatively, we
could include C0(X), C1(X), . . . , CK(X), and exclude the intercept.
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FIGURE 7.2. The Wage data. Left: The solid curve displays the fitted value from
a least squares regression of wage (in thousands of dollars) using step functions
of age. The dashed curves indicate an estimated 95 % confidence interval. Right:
We model the binary event wage>250 using logistic regression, again using step
functions of age. The fitted posterior probability of wage exceeding $250,000 is
shown, along with an estimated 95 % confidence interval.

be interpreted as the mean value of Y for X < c1. By comparison, (7.5)
predicts a response of β0+βj for cj ≤ X < cj+1, so βj represents the average
increase in the response for X in cj ≤ X < cj+1 relative to X < c1.

An example of fitting step functions to the Wage data from Figure 7.1 is
shown in the left-hand panel of Figure 7.2. We also fit the logistic regression
model

Pr(yi > 250|xi) =
exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))

1 + exp(β0 + β1C1(xi) + · · ·+ βKCK(xi))
(7.6)

in order to predict the probability that an individual is a high earner on the
basis of age. The right-hand panel of Figure 7.2 displays the fitted posterior
probabilities obtained using this approach.

Unfortunately, unless there are natural breakpoints in the predictors,
piecewise-constant functions can miss the action. For example, in the left-
hand panel of Figure 7.2, the first bin clearly misses the increasing trend
of wage with age. Nevertheless, step function approaches are very popular
in biostatistics and epidemiology, among other disciplines. For example,
5-year age groups are often used to define the bins.

7.3 Basis Functions
Polynomial and piecewise-constant regression models are in fact special
cases of a basis function approach. The idea is to have at hand a fam- basis

function
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ily of functions or transformations that can be applied to a variable X:
b1(X), b2(X), . . . , bK(X). Instead of fitting a linear model in X, we fit the
model

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + · · ·+ βKbK(xi) + εi. (7.7)

Note that the basis functions b1(·), b2(·), . . . , bK(·) are fixed and known.
(In other words, we choose the functions ahead of time.) For polynomial
regression, the basis functions are bj(xi) = xj

i , and for piecewise constant
functions they are bj(xi) = I(cj ≤ xi < cj+1). We can think of (7.7) as
a standard linear model with predictors b1(xi), b2(xi), . . . , bK(xi). Hence,
we can use least squares to estimate the unknown regression coefficients
in (7.7). Importantly, this means that all of the inference tools for linear
models that are discussed in Chapter 3, such as standard errors for the
coefficient estimates and F-statistics for the model’s overall significance,
are available in this setting.

Thus far we have considered the use of polynomial functions and piece-
wise constant functions for our basis functions; however, many alternatives
are possible. For instance, we can use wavelets or Fourier series to construct
basis functions. In the next section, we investigate a very common choice
for a basis function: regression splines. regression

spline

7.4 Regression Splines
Now we discuss a flexible class of basis functions that extends upon the
polynomial regression and piecewise constant regression approaches that
we have just seen.

7.4.1 Piecewise Polynomials
Instead of fitting a high-degree polynomial over the entire range of X, piece-
wise polynomial regression involves fitting separate low-degree polynomials piecewise

polynomial
regression

over different regions of X. For example, a piecewise cubic polynomial
works by fitting a cubic regression model of the form

yi = β0 + β1xi + β2x
2
i + β3x

3
i + εi, (7.8)

where the coefficients β0, β1, β2, and β3 differ in different parts of the range
of X. The points where the coefficients change are called knots. knotFor example, a piecewise cubic with no knots is just a standard cubic
polynomial, as in (7.1) with d = 3. A piecewise cubic polynomial with a
single knot at a point c takes the form

yi =

{
β01 + β11xi + β21x2

i + β31x3
i + εi if xi < c

β02 + β12xi + β22x2
i + β32x3

i + εi if xi ≥ c.

In other words, we fit two different polynomial functions to the data, one
on the subset of the observations with xi < c, and one on the subset of
the observations with xi ≥ c. The first polynomial function has coefficients
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FIGURE 7.3. Various piecewise polynomials are fit to a subset of the Wage
data, with a knot at age=50. Top Left: The cubic polynomials are unconstrained.
Top Right: The cubic polynomials are constrained to be continuous at age=50.
Bottom Left: The cubic polynomials are constrained to be continuous, and to have
continuous first and second derivatives. Bottom Right: A linear spline is shown,
which is constrained to be continuous.

β01,β11,β21, and β31, and the second has coefficients β02,β12,β22, and β32.
Each of these polynomial functions can be fit using least squares applied
to simple functions of the original predictor.

Using more knots leads to a more flexible piecewise polynomial. In gen-
eral, if we place K different knots throughout the range of X, then we
will end up fitting K + 1 different cubic polynomials. Note that we do not
need to use a cubic polynomial. For example, we can instead fit piecewise
linear functions. In fact, our piecewise constant functions of Section 7.2 are
piecewise polynomials of degree 0!

The top left panel of Figure 7.3 shows a piecewise cubic polynomial fit to
a subset of the Wage data, with a single knot at age=50. We immediately see
a problem: the function is discontinuous and looks ridiculous! Since each
polynomial has four parameters, we are using a total of eight degrees of
freedom in fitting this piecewise polynomial model. degrees of

freedom
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7.4.2 Constraints and Splines
The top left panel of Figure 7.3 looks wrong because the fitted curve is just
too flexible. To remedy this problem, we can fit a piecewise polynomial
under the constraint that the fitted curve must be continuous. In other
words, there cannot be a jump when age=50. The top right plot in Figure 7.3
shows the resulting fit. This looks better than the top left plot, but the V-
shaped join looks unnatural.

In the lower left plot, we have added two additional constraints: now both
the first and second derivatives of the piecewise polynomials are continuous derivativeat age=50. In other words, we are requiring that the piecewise polynomial
be not only continuous when age=50, but also very smooth. Each constraint
that we impose on the piecewise cubic polynomials effectively frees up one
degree of freedom, by reducing the complexity of the resulting piecewise
polynomial fit. So in the top left plot, we are using eight degrees of free-
dom, but in the bottom left plot we imposed three constraints (continuity,
continuity of the first derivative, and continuity of the second derivative)
and so are left with five degrees of freedom. The curve in the bottom left
plot is called a cubic spline.3 In general, a cubic spline with K knots uses cubic splinea total of 4 +K degrees of freedom.

In Figure 7.3, the lower right plot is a linear spline, which is continuous linear splineat age=50. The general definition of a degree-d spline is that it is a piecewise
degree-d polynomial, with continuity in derivatives up to degree d − 1 at
each knot. Therefore, a linear spline is obtained by fitting a line in each
region of the predictor space defined by the knots, requiring continuity at
each knot.

In Figure 7.3, there is a single knot at age=50. Of course, we could add
more knots, and impose continuity at each.

7.4.3 The Spline Basis Representation
The regression splines that we just saw in the previous section may have
seemed somewhat complex: how can we fit a piecewise degree-d polynomial
under the constraint that it (and possibly its first d − 1 derivatives) be
continuous? It turns out that we can use the basis model (7.7) to represent
a regression spline. A cubic spline with K knots can be modeled as

yi = β0 + β1b1(xi) + β2b2(xi) + · · ·+ βK+3bK+3(xi) + εi, (7.9)

for an appropriate choice of basis functions b1, b2, . . . , bK+3. The model
(7.9) can then be fit using least squares.

Just as there were several ways to represent polynomials, there are also
many equivalent ways to represent cubic splines using different choices of
basis functions in (7.9). The most direct way to represent a cubic spline
using (7.9) is to start off with a basis for a cubic polynomial—namely,
x, x2, and x3—and then add one truncated power basis function per knot. truncated

power basis
3Cubic splines are popular because most human eyes cannot detect the discontinuity

at the knots.
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FIGURE 7.4. A cubic spline and a natural cubic spline, with three knots, fit to
a subset of the Wage data. The dashed lines denote the knot locations.

A truncated power basis function is defined as

h(x, ξ) = (x− ξ)3+ =

{
(x− ξ)3 if x > ξ

0 otherwise, (7.10)

where ξ is the knot. One can show that adding a term of the form β4h(x, ξ)
to the model (7.8) for a cubic polynomial will lead to a discontinuity in
only the third derivative at ξ; the function will remain continuous, with
continuous first and second derivatives, at each of the knots.

In other words, in order to fit a cubic spline to a data set with K knots, we
perform least squares regression with an intercept and 3+K predictors, of
the form X,X2, X3, h(X, ξ1), h(X, ξ2), . . . , h(X, ξK), where ξ1, . . . , ξK are
the knots. This amounts to estimating a total of K + 4 regression coeffi-
cients; for this reason, fitting a cubic spline with K knots uses K+4 degrees
of freedom.

Unfortunately, splines can have high variance at the outer range of the
predictors—that is, when X takes on either a very small or very large
value. Figure 7.4 shows a fit to the Wage data with three knots. We see that
the confidence bands in the boundary region appear fairly wild. A natu-
ral spline is a regression spline with additional boundary constraints: the natural

splinefunction is required to be linear at the boundary (in the region where X is
smaller than the smallest knot, or larger than the largest knot). This addi-
tional constraint means that natural splines generally produce more stable
estimates at the boundaries. In Figure 7.4, a natural cubic spline is also
displayed as a red line. Note that the corresponding confidence intervals
are narrower.

7.4.4 Choosing the Number and Locations of the Knots
When we fit a spline, where should we place the knots? The regression
spline is most flexible in regions that contain a lot of knots, because in
those regions the polynomial coefficients can change rapidly. Hence, one
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FIGURE 7.5. A natural cubic spline function with four degrees of freedom is
fit to the Wage data. Left: A spline is fit to wage (in thousands of dollars) as
a function of age. Right: Logistic regression is used to model the binary event
wage>250 as a function of age. The fitted posterior probability of wage exceeding
$250,000 is shown. The dashed lines denote the knot locations.

option is to place more knots in places where we feel the function might
vary most rapidly, and to place fewer knots where it seems more stable.
While this option can work well, in practice it is common to place knots in
a uniform fashion. One way to do this is to specify the desired degrees of
freedom, and then have the software automatically place the corresponding
number of knots at uniform quantiles of the data.

Figure 7.5 shows an example on the Wage data. As in Figure 7.4, we
have fit a natural cubic spline with three knots, except this time the knot
locations were chosen automatically as the 25th, 50th, and 75th percentiles
of age. This was specified by requesting four degrees of freedom. The ar-
gument by which four degrees of freedom leads to three interior knots is
somewhat technical.4

How many knots should we use, or equivalently how many degrees of
freedom should our spline contain? One option is to try out different num-
bers of knots and see which produces the best looking curve. A somewhat
more objective approach is to use cross-validation, as discussed in Chap-
ters 5 and 6. With this method, we remove a portion of the data (say 10 %),
fit a spline with a certain number of knots to the remaining data, and then
use the spline to make predictions for the held-out portion. We repeat this
process multiple times until each observation has been left out once, and

4There are actually five knots, including the two boundary knots. A cubic spline with
five knots has nine degrees of freedom. But natural cubic splines have two additional
natural constraints at each boundary to enforce linearity, resulting in 9− 4 = 5 degrees
of freedom. Since this includes a constant, which is absorbed in the intercept, we count
it as four degrees of freedom.
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FIGURE 7.6. Ten-fold cross-validated mean squared errors for selecting the
degrees of freedom when fitting splines to the Wage data. The response is wage
and the predictor age. Left: A natural cubic spline. Right: A cubic spline.

then compute the overall cross-validated RSS. This procedure can be re-
peated for different numbers of knots K. Then the value of K giving the
smallest RSS is chosen.

Figure 7.6 shows ten-fold cross-validated mean squared errors for splines
with various degrees of freedom fit to the Wage data. The left-hand panel
corresponds to a natural cubic spline and the right-hand panel to a cu-
bic spline. The two methods produce almost identical results, with clear
evidence that a one-degree fit (a linear regression) is not adequate. Both
curves flatten out quickly, and it seems that three degrees of freedom for
the natural spline and four degrees of freedom for the cubic spline are quite
adequate.

In Section 7.7 we fit additive spline models simultaneously on several
variables at a time. This could potentially require the selection of degrees
of freedom for each variable. In cases like this we typically adopt a more
pragmatic approach and set the degrees of freedom to a fixed number, say
four, for all terms.

7.4.5 Comparison to Polynomial Regression
Figure 7.7 compares a natural cubic spline with 15 degrees of freedom to a
degree-15 polynomial on the Wage data set. The extra flexibility in the poly-
nomial produces undesirable results at the boundaries, while the natural
cubic spline still provides a reasonable fit to the data. Regression splines
often give superior results to polynomial regression. This is because unlike
polynomials, which must use a high degree (exponent in the highest mono-
mial term, e.g. X15) to produce flexible fits, splines introduce flexibility
by increasing the number of knots but keeping the degree fixed. Generally,
this approach produces more stable estimates. Splines also allow us to place
more knots, and hence flexibility, over regions where the function f seems
to be changing rapidly, and fewer knots where f appears more stable.
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FIGURE 7.7. On the Wage data set, a natural cubic spline with 15 degrees
of freedom is compared to a degree-15 polynomial. Polynomials can show wild
behavior, especially near the tails.

7.5 Smoothing Splines
In the last section we discussed regression splines, which we create by spec-
ifying a set of knots, producing a sequence of basis functions, and then
using least squares to estimate the spline coefficients. We now introduce a
somewhat different approach that also produces a spline.

7.5.1 An Overview of Smoothing Splines
In fitting a smooth curve to a set of data, what we really want to do is
find some function, say g(x), that fits the observed data well: that is, we
want RSS =

∑n
i=1(yi − g(xi))2 to be small. However, there is a problem

with this approach. If we don’t put any constraints on g(xi), then we can
always make RSS zero simply by choosing g such that it interpolates all
of the yi. Such a function would woefully overfit the data—it would be far
too flexible. What we really want is a function g that makes RSS small,
but that is also smooth.

How might we ensure that g is smooth? There are a number of ways to
do this. A natural approach is to find the function g that minimizes

n∑

i=1

(yi − g(xi))
2 + λ

∫
g′′(t)2dt (7.11)

where λ is a nonnegative tuning parameter. The function g that minimizes
(7.11) is known as a smoothing spline. smoothing

splineWhat does (7.11) mean? Equation 7.11 takes the “Loss+Penalty” for-
mulation that we encounter in the context of ridge regression and the lasso
in Chapter 6. The term

∑n
i=1(yi − g(xi))2 is a loss function that encour- loss functionages g to fit the data well, and the term λ

∫
g′′(t)2dt is a penalty term

that penalizes the variability in g. The notation g′′(t) indicates the second
derivative of the function g. The first derivative g′(t) measures the slope
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of a function at t, and the second derivative corresponds to the amount by
which the slope is changing. Hence, broadly speaking, the second derivative
of a function is a measure of its roughness: it is large in absolute value if
g(t) is very wiggly near t, and it is close to zero otherwise. (The second
derivative of a straight line is zero; note that a line is perfectly smooth.)
The

∫
notation is an integral, which we can think of as a summation over

the range of t. In other words,
∫
g′′(t)2dt is simply a measure of the total

change in the function g′(t), over its entire range. If g is very smooth, then
g′(t) will be close to constant and

∫
g′′(t)2dt will take on a small value.

Conversely, if g is jumpy and variable then g′(t) will vary significantly and∫
g′′(t)2dt will take on a large value. Therefore, in (7.11), λ

∫
g′′(t)2dt en-

courages g to be smooth. The larger the value of λ, the smoother g will be.
When λ = 0, then the penalty term in (7.11) has no effect, and so the

function g will be very jumpy and will exactly interpolate the training
observations. When λ → ∞, g will be perfectly smooth—it will just be
a straight line that passes as closely as possible to the training points.
In fact, in this case, g will be the linear least squares line, since the loss
function in (7.11) amounts to minimizing the residual sum of squares. For
an intermediate value of λ, g will approximate the training observations
but will be somewhat smooth. We see that λ controls the bias-variance
trade-off of the smoothing spline.

The function g(x) that minimizes (7.11) can be shown to have some spe-
cial properties: it is a piecewise cubic polynomial with knots at the unique
values of x1, . . . , xn, and continuous first and second derivatives at each
knot. Furthermore, it is linear in the region outside of the extreme knots.
In other words, the function g(x) that minimizes (7.11) is a natural cubic
spline with knots at x1, . . . , xn! However, it is not the same natural cubic
spline that one would get if one applied the basis function approach de-
scribed in Section 7.4.3 with knots at x1, . . . , xn—rather, it is a shrunken
version of such a natural cubic spline, where the value of the tuning pa-
rameter λ in (7.11) controls the level of shrinkage.

7.5.2 Choosing the Smoothing Parameter λ

We have seen that a smoothing spline is simply a natural cubic spline
with knots at every unique value of xi. It might seem that a smoothing
spline will have far too many degrees of freedom, since a knot at each data
point allows a great deal of flexibility. But the tuning parameter λ controls
the roughness of the smoothing spline, and hence the effective degrees of
freedom. It is possible to show that as λ increases from 0 to∞, the effective effective

degrees of
freedom

degrees of freedom, which we write dfλ, decrease from n to 2.
In the context of smoothing splines, why do we discuss effective degrees

of freedom instead of degrees of freedom? Usually degrees of freedom refer
to the number of free parameters, such as the number of coefficients fit in a
polynomial or cubic spline. Although a smoothing spline has n parameters
and hence n nominal degrees of freedom, these n parameters are heavily
constrained or shrunk down. Hence dfλ is a measure of the flexibility of the
smoothing spline—the higher it is, the more flexible (and the lower-bias but
higher-variance) the smoothing spline. The definition of effective degrees of
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freedom is somewhat technical. We can write

ĝλ = Sλy, (7.12)

where ĝλ is the solution to (7.11) for a particular choice of λ—that is, it
is an n-vector containing the fitted values of the smoothing spline at the
training points x1, . . . , xn. Equation 7.12 indicates that the vector of fitted
values when applying a smoothing spline to the data can be written as a
n × n matrix Sλ (for which there is a formula) times the response vector
y. Then the effective degrees of freedom is defined to be

dfλ =
n∑

i=1

{Sλ}ii, (7.13)

the sum of the diagonal elements of the matrix Sλ.
In fitting a smoothing spline, we do not need to select the number or

location of the knots—there will be a knot at each training observation,
x1, . . . , xn. Instead, we have another problem: we need to choose the value
of λ. It should come as no surprise that one possible solution to this problem
is cross-validation. In other words, we can find the value of λ that makes
the cross-validated RSS as small as possible. It turns out that the leave-
one-out cross-validation error (LOOCV) can be computed very efficiently
for smoothing splines, with essentially the same cost as computing a single
fit, using the following formula:

RSScv(λ) =
n∑

i=1

(yi − ĝ(−i)
λ (xi))

2 =
n∑

i=1

[
yi − ĝλ(xi)

1− {Sλ}ii

]2
.

The notation ĝ(−i)
λ (xi) indicates the fitted value for this smoothing spline

evaluated at xi, where the fit uses all of the training observations except
for the ith observation (xi, yi). In contrast, ĝλ(xi) indicates the smoothing
spline function fit to all of the training observations and evaluated at xi.
This remarkable formula says that we can compute each of these leave-
one-out fits using only ĝλ, the original fit to all of the data!5 We have
a very similar formula (5.2) on page 205 in Chapter 5 for least squares
linear regression. Using (5.2), we can very quickly perform LOOCV for
the regression splines discussed earlier in this chapter, as well as for least
squares regression using arbitrary basis functions.

Figure 7.8 shows the results from fitting a smoothing spline to the Wage
data. The red curve indicates the fit obtained from pre-specifying that we
would like a smoothing spline with 16 effective degrees of freedom. The blue
curve is the smoothing spline obtained when λ is chosen using LOOCV; in
this case, the value of λ chosen results in 6.8 effective degrees of freedom
(computed using (7.13)). For this data, there is little discernible difference
between the two smoothing splines, beyond the fact that the one with 16
degrees of freedom seems slightly wigglier. Since there is little difference
between the two fits, the smoothing spline fit with 6.8 degrees of freedom

5The exact formulas for computing ĝ(xi) and Sλ are very technical; however, efficient
algorithms are available for computing these quantities.
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FIGURE 7.8. Smoothing spline fits to the Wage data. The red curve results
from specifying 16 effective degrees of freedom. For the blue curve, λ was found
automatically by leave-one-out cross-validation, which resulted in 6.8 effective
degrees of freedom.

is preferable, since in general simpler models are better unless the data
provides evidence in support of a more complex model.

7.6 Local Regression
Local regression is a different approach for fitting flexible non-linear func- local

regressiontions, which involves computing the fit at a target point x0 using only the
nearby training observations. Figure 7.9 illustrates the idea on some simu-
lated data, with one target point near 0.4, and another near the boundary
at 0.05. In this figure the blue line represents the function f(x) from which
the data were generated, and the light orange line corresponds to the local
regression estimate f̂(x). Local regression is described in Algorithm 7.1.

Note that in Step 3 of Algorithm 7.1, the weights Ki0 will differ for each
value of x0. In other words, in order to obtain the local regression fit at a
new point, we need to fit a new weighted least squares regression model by
minimizing (7.14) for a new set of weights. Local regression is sometimes
referred to as a memory-based procedure, because like nearest-neighbors, we
need all the training data each time we wish to compute a prediction. We
will avoid getting into the technical details of local regression here—there
are books written on the topic.

In order to perform local regression, there are a number of choices to
be made, such as how to define the weighting function K, and whether
to fit a linear, constant, or quadratic regression in Step 3. (Equation 7.14
corresponds to a linear regression.) While all of these choices make some
difference, the most important choice is the span s, which is the proportion
of points used to compute the local regression at x0, as defined in Step 1
above. The span plays a role like that of the tuning parameter λ in smooth-



304 7. Moving Beyond Linearity

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O
O

O

OO

O

O

O

O

O
O

O

O

OOO

O
O
O

O
O

O

O

O

OO

O

O

OO
O

O

O

O

O

O

OO
O

O

O

O

O
O
O

O

O
O

OO

O

O

O
O

O
OO

O

O

O
O

OO

O

O

OO

O

O
O
OO

O

O

O
O

O
O

O

OO

O

O

O

OO

O

O

O

O

OO
O

O

O

O

O
O

O

O

O
O

O

OO

O

O

O

O

O
O

O

O

OOO

O
O
O

O

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

1.
5

O

O

O
O

O

OO

O

O

O

O

O
O

O

O

OOO

O
O
O

O
O

O

O

O

OO

O

O

OO
O

O

O

O

O

O

OO
O

O

O

O

O
O
O

O

O
O

OO

O

O

O
O

O
OO

O

O

O
O

OO

O

O

OO

O

O
O
OO

O

O

O
O

O
O

O

OO

O

O

O

OO

O

O

O

O

OO
O

O

O

O

O
O

O
O

O

O

O

OO

O

O

OO
O

O

O

O

O

O

OO
O

O

O

O

O
O
O

O

O
O

OO

O

O

O
O

O
OO

O

O

O
O

OO

O

O

OO

O

O

Local Regression

FIGURE 7.9. Local regression illustrated on some simulated data, where the
blue curve represents f(x) from which the data were generated, and the light
orange curve corresponds to the local regression estimate f̂(x). The orange colored
points are local to the target point x0, represented by the orange vertical line. The
yellow bell-shape superimposed on the plot indicates weights assigned to each
point, decreasing to zero with distance from the target point. The fit f̂(x0) at x0

is obtained by fitting a weighted linear regression (orange line segment), and using
the fitted value at x0 (orange solid dot) as the estimate f̂(x0).

ing splines: it controls the flexibility of the non-linear fit. The smaller the
value of s, the more local and wiggly will be our fit; alternatively, a very
large value of s will lead to a global fit to the data using all of the train-
ing observations. We can again use cross-validation to choose s, or we can
specify it directly. Figure 7.10 displays local linear regression fits on the
Wage data, using two values of s: 0.7 and 0.2. As expected, the fit obtained
using s = 0.7 is smoother than that obtained using s = 0.2.

The idea of local regression can be generalized in many different ways.
In a setting with multiple features X1, X2, . . . , Xp, one very useful general-
ization involves fitting a multiple linear regression model that is global in
some variables, but local in another, such as time. Such varying coefficient
models are a useful way of adapting a model to the most recently gathered varying

coefficient
model

data. Local regression also generalizes very naturally when we want to fit
models that are local in a pair of variables X1 and X2, rather than one.
We can simply use two-dimensional neighborhoods, and fit bivariate linear
regression models using the observations that are near each target point
in two-dimensional space. Theoretically the same approach can be imple-
mented in higher dimensions, using linear regressions fit to p-dimensional
neighborhoods. However, local regression can perform poorly if p is much
larger than about 3 or 4 because there will generally be very few training
observations close to x0. Nearest-neighbors regression, discussed in Chap-
ter 3, suffers from a similar problem in high dimensions.
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Algorithm 7.1 Local Regression At X = x0

1. Gather the fraction s = k/n of training points whose xi are closest
to x0.

2. Assign a weight Ki0 = K(xi, x0) to each point in this neighborhood,
so that the point furthest from x0 has weight zero, and the closest
has the highest weight. All but these k nearest neighbors get weight
zero.

3. Fit a weighted least squares regression of the yi on the xi using the
aforementioned weights, by finding β̂0 and β̂1 that minimize

n∑

i=1

Ki0(yi − β0 − β1xi)
2. (7.14)

4. The fitted value at x0 is given by f̂(x0) = β̂0 + β̂1x0.
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FIGURE 7.10. Local linear fits to the Wage data. The span specifies the fraction
of the data used to compute the fit at each target point.

7.7 Generalized Additive Models
In Sections 7.1–7.6, we present a number of approaches for flexibly predict-
ing a response Y on the basis of a single predictor X. These approaches can
be seen as extensions of simple linear regression. Here we explore the prob-
lem of flexibly predicting Y on the basis of several predictors, X1, . . . , Xp.
This amounts to an extension of multiple linear regression.

Generalized additive models (GAMs) provide a general framework for generalized
additive
model

extending a standard linear model by allowing non-linear functions of each
of the variables, while maintaining additivity. Just like linear models, GAMs

additivitycan be applied with both quantitative and qualitative responses. We first
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FIGURE 7.11. For the Wage data, plots of the relationship between each feature
and the response, wage, in the fitted model (7.16). Each plot displays the fitted
function and pointwise standard errors. The first two functions are natural splines
in year and age, with four and five degrees of freedom, respectively. The third
function is a step function, fit to the qualitative variable education.

examine GAMs for a quantitative response in Section 7.7.1, and then for a
qualitative response in Section 7.7.2.

7.7.1 GAMs for Regression Problems
A natural way to extend the multiple linear regression model

yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + εi

in order to allow for non-linear relationships between each feature and the
response is to replace each linear component βjxij with a (smooth) non-
linear function fj(xij). We would then write the model as

yi = β0 +
p∑

j=1

fj(xij) + εi

= β0 + f1(xi1) + f2(xi2) + · · ·+ fp(xip) + εi. (7.15)

This is an example of a GAM. It is called an additive model because we
calculate a separate fj for each Xj , and then add together all of their
contributions.

In Sections 7.1–7.6, we discuss many methods for fitting functions to a
single variable. The beauty of GAMs is that we can use these methods
as building blocks for fitting an additive model. In fact, for most of the
methods that we have seen so far in this chapter, this can be done fairly
trivially. Take, for example, natural splines, and consider the task of fitting
the model

wage = β0 + f1(year) + f2(age) + f3(education) + ε (7.16)

on the Wage data. Here year and age are quantitative variables, while the
variable education is qualitative with five levels: <HS, HS, <Coll, Coll, >Coll,
referring to the amount of high school or college education that an individ-
ual has completed. We fit the first two functions using natural splines. We
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FIGURE 7.12. Details are as in Figure 7.11, but now f1 and f2 are smoothing
splines with four and five degrees of freedom, respectively.

fit the third function using a separate constant for each level, via the usual
dummy variable approach of Section 3.3.1.

Figure 7.11 shows the results of fitting the model (7.16) using least
squares. This is easy to do, since as discussed in Section 7.4, natural splines
can be constructed using an appropriately chosen set of basis functions.
Hence the entire model is just a big regression onto spline basis variables
and dummy variables, all packed into one big regression matrix.

Figure 7.11 can be easily interpreted. The left-hand panel indicates that
holding age and education fixed, wage tends to increase slightly with year;
this may be due to inflation. The center panel indicates that holding
education and year fixed, wage tends to be highest for intermediate val-
ues of age, and lowest for the very young and very old. The right-hand
panel indicates that holding year and age fixed, wage tends to increase
with education: the more educated a person is, the higher their salary, on
average. All of these findings are intuitive.

Figure 7.12 shows a similar triple of plots, but this time f1 and f2 are
smoothing splines with four and five degrees of freedom, respectively. Fit-
ting a GAM with a smoothing spline is not quite as simple as fitting a GAM
with a natural spline, since in the case of smoothing splines, least squares
cannot be used. However, standard software such as the Python package
pygam can be used to fit GAMs using smoothing splines, via an approach pygam
known as backfitting. This method fits a model involving multiple predic- backfittingtors by repeatedly updating the fit for each predictor in turn, holding the
others fixed. The beauty of this approach is that each time we update a
function, we simply apply the fitting method for that variable to a partial
residual.6

The fitted functions in Figures 7.11 and 7.12 look rather similar. In most
situations, the differences in the GAMs obtained using smoothing splines
versus natural splines are small.

6A partial residual for X3, for example, has the form ri = yi−f1(xi1)−f2(xi2). If we
know f1 and f2, then we can fit f3 by treating this residual as a response in a non-linear
regression on X3.
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We do not have to use splines as the building blocks for GAMs: we can
just as well use local regression, polynomial regression, or any combination
of the approaches seen earlier in this chapter in order to create a GAM.
GAMs are investigated in further detail in the lab at the end of this chapter.

Pros and Cons of GAMs
Before we move on, let us summarize the advantages and limitations of a
GAM.

! GAMs allow us to fit a non-linear fj to each Xj , so that we can
automatically model non-linear relationships that standard linear re-
gression will miss. This means that we do not need to manually try
out many different transformations on each variable individually.

! The non-linear fits can potentially make more accurate predictions
for the response Y .

! Because the model is additive, we can examine the effect of each Xj

on Y individually while holding all of the other variables fixed.

! The smoothness of the function fj for the variable Xj can be sum-
marized via degrees of freedom.

" The main limitation of GAMs is that the model is restricted to be
additive. With many variables, important interactions can be missed.
However, as with linear regression, we can manually add interaction
terms to the GAM model by including additional predictors of the
form Xj × Xk. In addition we can add low-dimensional interaction
functions of the form fjk(Xj , Xk) into the model; such terms can
be fit using two-dimensional smoothers such as local regression, or
two-dimensional splines (not covered here).

For fully general models, we have to look for even more flexible approaches
such as random forests and boosting, described in Chapter 8. GAMs provide
a useful compromise between linear and fully nonparametric models.

7.7.2 GAMs for Classification Problems
GAMs can also be used in situations where Y is qualitative. For simplicity,
here we assume Y takes on values 0 or 1, and let p(X) = Pr(Y = 1|X) be
the conditional probability (given the predictors) that the response equals
one. Recall the logistic regression model (4.6):

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + β2X2 + · · ·+ βpXp. (7.17)

The left-hand side is the log of the odds of P (Y = 1|X) versus P (Y = 0|X),
which (7.17) represents as a linear function of the predictors. A natural way
to extend (7.17) to allow for non-linear relationships is to use the model

log

(
p(X)

1− p(X)

)
= β0 + f1(X1) + f2(X2) + · · ·+ fp(Xp). (7.18)
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FIGURE 7.13. For the Wage data, the logistic regression GAM given in (7.19)
is fit to the binary response I(wage>250). Each plot displays the fitted function
and pointwise standard errors. The first function is linear in year, the second
function a smoothing spline with five degrees of freedom in age, and the third a
step function for education. There are very wide standard errors for the first
level <HS of education.

Equation 7.18 is a logistic regression GAM. It has all the same pros and
cons as discussed in the previous section for quantitative responses.

We fit a GAM to the Wage data in order to predict the probability that
an individual’s income exceeds $250,000 per year. The GAM that we fit
takes the form

log

(
p(X)

1− p(X)

)
= β0 + β1 × year+ f2(age) + f3(education), (7.19)

where
p(X) = Pr(wage > 250|year, age, education).

Once again f2 is fit using a smoothing spline with five degrees of freedom,
and f3 is fit as a step function, by creating dummy variables for each of the
levels of education. The resulting fit is shown in Figure 7.13. The last panel
looks suspicious, with very wide confidence intervals for level <HS. In fact,
no response values equal one for that category: no individuals with less than
a high school education make more than $250,000 per year. Hence we refit
the GAM, excluding the individuals with less than a high school education.
The resulting model is shown in Figure 7.14. As in Figures 7.11 and 7.12,
all three panels have similar vertical scales. This allows us to visually assess
the relative contributions of each of the variables. We observe that age and
education have a much larger effect than year on the probability of being
a high earner.

7.8 Lab: Non-Linear Modeling
In this lab, we demonstrate some of the nonlinear models discussed in
this chapter. We use the Wage data as a running example, and show that
many of the complex non-linear fitting procedures discussed can easily be
implemented in Python.
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