
6
Linear Model Selection
and Regularization

In the regression setting, the standard linear model

Y = β0 + β1X1 + · · ·+ βpXp + ε (6.1)

is commonly used to describe the relationship between a response Y and
a set of variables X1, X2, . . . , Xp. We have seen in Chapter 3 that one
typically fits this model using least squares.

In the chapters that follow, we consider some approaches for extending
the linear model framework. In Chapter 7 we generalize (6.1) in order to
accommodate non-linear, but still additive, relationships, while in Chap-
ters 8 and 10 we consider even more general non-linear models. However,
the linear model has distinct advantages in terms of inference and, on real-
world problems, is often surprisingly competitive in relation to non-linear
methods. Hence, before moving to the non-linear world, we discuss in this
chapter some ways in which the simple linear model can be improved, by re-
placing plain least squares fitting with some alternative fitting procedures.

Why might we want to use another fitting procedure instead of least
squares? As we will see, alternative fitting procedures can yield better pre-
diction accuracy and model interpretability.

• Prediction Accuracy: Provided that the true relationship between the
response and the predictors is approximately linear, the least squares
estimates will have low bias. If n ! p—that is, if n, the number of
observations, is much larger than p, the number of variables—then the
least squares estimates tend to also have low variance, and hence will
perform well on test observations. However, if n is not much larger
than p, then there can be a lot of variability in the least squares fit,
resulting in overfitting and consequently poor predictions on future
observations not used in model training. And if p > n, then there is no
longer a unique least squares coefficient estimate: there are infinitely
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230 6. Linear Model Selection and Regularization

many solutions. Each of these least squares solutions gives zero error
on the training data, but typically very poor test set performance
due to extremely high variance.1 By constraining or shrinking the
estimated coefficients, we can often substantially reduce the variance
at the cost of a negligible increase in bias. This can lead to substantial
improvements in the accuracy with which we can predict the response
for observations not used in model training.

• Model Interpretability: It is often the case that some or many of the
variables used in a multiple regression model are in fact not associ-
ated with the response. Including such irrelevant variables leads to
unnecessary complexity in the resulting model. By removing these
variables—that is, by setting the corresponding coefficient estimates
to zero—we can obtain a model that is more easily interpreted. Now
least squares is extremely unlikely to yield any coefficient estimates
that are exactly zero. In this chapter, we see some approaches for au-
tomatically performing feature selection or variable selection—that is, feature

selection
variable
selection

for excluding irrelevant variables from a multiple regression model.

There are many alternatives, both classical and modern, to using least
squares to fit (6.1). In this chapter, we discuss three important classes of
methods.

• Subset Selection. This approach involves identifying a subset of the p
predictors that we believe to be related to the response. We then fit
a model using least squares on the reduced set of variables.

• Shrinkage. This approach involves fitting a model involving all p pre-
dictors. However, the estimated coefficients are shrunken towards zero
relative to the least squares estimates. This shrinkage (also known as
regularization) has the effect of reducing variance. Depending on what
type of shrinkage is performed, some of the coefficients may be esti-
mated to be exactly zero. Hence, shrinkage methods can also perform
variable selection.

• Dimension Reduction. This approach involves projecting the p predic-
tors into an M -dimensional subspace, where M < p. This is achieved
by computing M different linear combinations, or projections, of the
variables. Then these M projections are used as predictors to fit a
linear regression model by least squares.

In the following sections we describe each of these approaches in greater de-
tail, along with their advantages and disadvantages. Although this chapter
describes extensions and modifications to the linear model for regression
seen in Chapter 3, the same concepts apply to other methods, such as the
classification models seen in Chapter 4.

1When p ! n, the least squares solution that has the smallest sum of squared coeffi-
cients can sometimes perform quite well. See Section 10.8 for a more detailed discussion.
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6.1 Subset Selection
In this section we consider some methods for selecting subsets of predictors.
These include best subset and stepwise model selection procedures.

6.1.1 Best Subset Selection
To perform best subset selection, we fit a separate least squares regression best subset

selectionfor each possible combination of the p predictors. That is, we fit all p models
that contain exactly one predictor, all

(p
2

)
= p(p−1)/2 models that contain

exactly two predictors, and so forth. We then look at all of the resulting
models, with the goal of identifying the one that is best.

The problem of selecting the best model from among the 2p possibilities
considered by best subset selection is not trivial. This is usually broken up
into two stages, as described in Algorithm 6.1.

Algorithm 6.1 Best subset selection
1. Let M0 denote the null model, which contains no predictors. This

model simply predicts the sample mean for each observation.

2. For k = 1, 2, . . . p:

(a) Fit all
(p
k

)
models that contain exactly k predictors.

(b) Pick the best among these
(p
k

)
models, and call it Mk. Here best

is defined as having the smallest RSS, or equivalently largest R2.

3. Select a single best model from among M0, . . . ,Mp using using the
prediction error on a validation set, Cp (AIC), BIC, or adjusted R2.
Or use the cross-validation method.

In Algorithm 6.1, Step 2 identifies the best model (on the training data)
for each subset size, in order to reduce the problem from one of 2p possible
models to one of p + 1 possible models. In Figure 6.1, these models form
the lower frontier depicted in red.

Now in order to select a single best model, we must simply choose among
these p + 1 options. This task must be performed with care, because the
RSS of these p + 1 models decreases monotonically, and the R2 increases
monotonically, as the number of features included in the models increases.
Therefore, if we use these statistics to select the best model, then we will
always end up with a model involving all of the variables. The problem is
that a low RSS or a high R2 indicates a model with a low training error,
whereas we wish to choose a model that has a low test error. (As shown in
Chapter 2 in Figures 2.9–2.11, training error tends to be quite a bit smaller
than test error, and a low training error by no means guarantees a low test
error.) Therefore, in Step 3, we use the error on a validation set, Cp, BIC, or
adjusted R2 in order to select among M0,M1, . . . ,Mp. If cross-validation
is used to select the best model, then Step 2 is repeated on each training
fold, and the validation errors are averaged to select the best value of k.
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FIGURE 6.1. For each possible model containing a subset of the ten predictors
in the Credit data set, the RSS and R2 are displayed. The red frontier tracks the
best model for a given number of predictors, according to RSS and R2. Though
the data set contains only ten predictors, the x-axis ranges from 1 to 11, since one
of the variables is categorical and takes on three values, leading to the creation of
two dummy variables.

Then the model Mk fit on the full training set is delivered for the chosen
k. These approaches are discussed in Section 6.1.3.

An application of best subset selection is shown in Figure 6.1. Each
plotted point corresponds to a least squares regression model fit using a
different subset of the 10 predictors in the Credit data set, discussed in
Chapter 3. Here the variable region is a three-level qualitative variable,
and so is represented by two dummy variables, which are selected sepa-
rately in this case. Hence, there are a total of 11 possible variables which
can be included in the model. We have plotted the RSS and R2 statistics
for each model, as a function of the number of variables. The red curves
connect the best models for each model size, according to RSS or R2. The
figure shows that, as expected, these quantities improve as the number of
variables increases; however, from the three-variable model on, there is little
improvement in RSS and R2 as a result of including additional predictors.

Although we have presented best subset selection here for least squares
regression, the same ideas apply to other types of models, such as logistic
regression. In the case of logistic regression, instead of ordering models by
RSS in Step 2 of Algorithm 6.1, we instead use the deviance, a measure deviancethat plays the role of RSS for a broader class of models. The deviance is
negative two times the maximized log-likelihood; the smaller the deviance,
the better the fit.

While best subset selection is a simple and conceptually appealing ap-
proach, it suffers from computational limitations. The number of possible
models that must be considered grows rapidly as p increases. In general,
there are 2p models that involve subsets of p predictors. So if p = 10,
then there are approximately 1,000 possible models to be considered, and if
p = 20, then there are over one million possibilities! Consequently, best sub-
set selection becomes computationally infeasible for values of p greater than
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Algorithm 6.2 Forward stepwise selection
1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, . . . , p− 1:

(a) Consider all p − k models that augment the predictors in Mk

with one additional predictor.
(b) Choose the best among these p − k models, and call it Mk+1.

Here best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using the pre-
diction error on a validation set, Cp (AIC), BIC, or adjusted R2. Or
use the cross-validation method.

around 40, even with extremely fast modern computers. There are compu-
tational shortcuts—so called branch-and-bound techniques—for eliminat-
ing some choices, but these have their limitations as p gets large. They also
only work for least squares linear regression. We present computationally
efficient alternatives to best subset selection next.

6.1.2 Stepwise Selection
For computational reasons, best subset selection cannot be applied with
very large p. Best subset selection may also suffer from statistical problems
when p is large. The larger the search space, the higher the chance of finding
models that look good on the training data, even though they might not
have any predictive power on future data. Thus an enormous search space
can lead to overfitting and high variance of the coefficient estimates.

For both of these reasons, stepwise methods, which explore a far more
restricted set of models, are attractive alternatives to best subset selection.

Forward Stepwise Selection
Forward stepwise selection is a computationally efficient alternative to best forward

stepwise
selection

subset selection. While the best subset selection procedure considers all
2p possible models containing subsets of the p predictors, forward step-
wise considers a much smaller set of models. Forward stepwise selection
begins with a model containing no predictors, and then adds predictors
to the model, one-at-a-time, until all of the predictors are in the model.
In particular, at each step the variable that gives the greatest additional
improvement to the fit is added to the model. More formally, the forward
stepwise selection procedure is given in Algorithm 6.2.

Unlike best subset selection, which involved fitting 2p models, forward
stepwise selection involves fitting one null model, along with p− k models
in the kth iteration, for k = 0, . . . , p − 1. This amounts to a total of 1 +∑p−1

k=0(p−k) = 1+p(p+1)/2 models. This is a substantial difference: when
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# Variables Best subset Forward stepwise
One rating rating
Two rating, income rating, income
Three rating, income, student rating, income, student
Four cards, income rating, income,

student, limit student, limit
TABLE 6.1. The first four selected models for best subset selection and forward
stepwise selection on the Credit data set. The first three models are identical but
the fourth models differ.

p = 20, best subset selection requires fitting 1,048,576 models, whereas
forward stepwise selection requires fitting only 211 models.2

In Step 2(b) of Algorithm 6.2, we must identify the best model from
among those p−k that augment Mk with one additional predictor. We can
do this by simply choosing the model with the lowest RSS or the highest
R2. However, in Step 3, we must identify the best model among a set of
models with different numbers of variables. This is more challenging, and
is discussed in Section 6.1.3.

Forward stepwise selection’s computational advantage over best subset
selection is clear. Though forward stepwise tends to do well in practice,
it is not guaranteed to find the best possible model out of all 2p mod-
els containing subsets of the p predictors. For instance, suppose that in a
given data set with p = 3 predictors, the best possible one-variable model
contains X1, and the best possible two-variable model instead contains X2

and X3. Then forward stepwise selection will fail to select the best possible
two-variable model, because M1 will contain X1, so M2 must also contain
X1 together with one additional variable.

Table 6.1, which shows the first four selected models for best subset
and forward stepwise selection on the Credit data set, illustrates this phe-
nomenon. Both best subset selection and forward stepwise selection choose
rating for the best one-variable model and then include income and student
for the two- and three-variable models. However, best subset selection re-
places rating by cards in the four-variable model, while forward stepwise
selection must maintain rating in its four-variable model. In this example,
Figure 6.1 indicates that there is not much difference between the three-
and four-variable models in terms of RSS, so either of the four-variable
models will likely be adequate.

Forward stepwise selection can be applied even in the high-dimensional
setting where n < p; however, in this case, it is possible to construct sub-
models M0, . . . ,Mn−1 only, since each submodel is fit using least squares,
which will not yield a unique solution if p ≥ n.

Backward Stepwise Selection
Like forward stepwise selection, backward stepwise selection provides an backward

stepwise
selection2Though forward stepwise selection considers p(p + 1)/2 + 1 models, it performs a

guided search over model space, and so the effective model space considered contains
substantially more than p(p+ 1)/2 + 1 models.
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efficient alternative to best subset selection. However, unlike forward step-
wise selection, it begins with the full least squares model containing all p
predictors, and then iteratively removes the least useful predictor, one-at-
a-time. Details are given in Algorithm 6.3.

Algorithm 6.3 Backward stepwise selection
1. Let Mp denote the full model, which contains all p predictors.

2. For k = p, p− 1, . . . , 1:

(a) Consider all k models that contain all but one of the predictors
in Mk, for a total of k − 1 predictors.

(b) Choose the best among these k models, and call it Mk−1. Here
best is defined as having smallest RSS or highest R2.

3. Select a single best model from among M0, . . . ,Mp using the pre-
diction error on a validation set, Cp (AIC), BIC, or adjusted R2. Or
use the cross-validation method.

Like forward stepwise selection, the backward selection approach searches
through only 1+p(p+1)/2 models, and so can be applied in settings where
p is too large to apply best subset selection.3 Also like forward stepwise
selection, backward stepwise selection is not guaranteed to yield the best
model containing a subset of the p predictors.

Backward selection requires that the number of samples n is larger than
the number of variables p (so that the full model can be fit). In contrast,
forward stepwise can be used even when n < p, and so is the only viable
subset method when p is very large.

Hybrid Approaches
The best subset, forward stepwise, and backward stepwise selection ap-
proaches generally give similar but not identical models. As another al-
ternative, hybrid versions of forward and backward stepwise selection are
available, in which variables are added to the model sequentially, in analogy
to forward selection. However, after adding each new variable, the method
may also remove any variables that no longer provide an improvement in
the model fit. Such an approach attempts to more closely mimic best sub-
set selection while retaining the computational advantages of forward and
backward stepwise selection.

6.1.3 Choosing the Optimal Model
Best subset selection, forward selection, and backward selection result in
the creation of a set of models, each of which contains a subset of the p

3Like forward stepwise selection, backward stepwise selection performs a guided search
over model space, and so effectively considers substantially more than 1 + p(p + 1)/2
models.
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predictors. To apply these methods, we need a way to determine which of
these models is best. As we discussed in Section 6.1.1, the model containing
all of the predictors will always have the smallest RSS and the largest R2,
since these quantities are related to the training error. Instead, we wish to
choose a model with a low test error. As is evident here, and as we show
in Chapter 2, the training error can be a poor estimate of the test error.
Therefore, RSS and R2 are not suitable for selecting the best model among
a collection of models with different numbers of predictors.

In order to select the best model with respect to test error, we need to
estimate this test error. There are two common approaches:

1. We can indirectly estimate test error by making an adjustment to the
training error to account for the bias due to overfitting.

2. We can directly estimate the test error, using either a validation set
approach or a cross-validation approach, as discussed in Chapter 5.

We consider both of these approaches below.

Cp, AIC, BIC, and Adjusted R2

We show in Chapter 2 that the training set MSE is generally an under-
estimate of the test MSE. (Recall that MSE = RSS/n.) This is because
when we fit a model to the training data using least squares, we specifi-
cally estimate the regression coefficients such that the training RSS (but
not the test RSS) is as small as possible. In particular, the training error
will decrease as more variables are included in the model, but the test error
may not. Therefore, training set RSS and training set R2 cannot be used
to select from among a set of models with different numbers of variables.

However, a number of techniques for adjusting the training error for the
model size are available. These approaches can be used to select among a set
of models with different numbers of variables. We now consider four such
approaches: Cp, Akaike information criterion (AIC), Bayesian information

Cp

Akaike
information
criterion

criterion (BIC), and adjusted R2. Figure 6.2 displays Cp, BIC, and adjusted

Bayesian
information
criterion
adjusted R2

R2 for the best model of each size produced by best subset selection on the
Credit data set.

For a fitted least squares model containing d predictors, the Cp estimate
of test MSE is computed using the equation

Cp =
1

n

(
RSS + 2dσ̂2

)
, (6.2)

where σ̂2 is an estimate of the variance of the error ε associated with each
response measurement in (6.1).4 Typically σ̂2 is estimated using the full
model containing all predictors. Essentially, the Cp statistic adds a penalty
of 2dσ̂2 to the training RSS in order to adjust for the fact that the training
error tends to underestimate the test error. Clearly, the penalty increases as
the number of predictors in the model increases; this is intended to adjust

4Mallow’s Cp is sometimes defined as C′
p = RSS/σ̂2 + 2d − n. This is equivalent to

the definition given above in the sense that Cp = 1
n σ̂2(C′

p + n), and so the model with
smallest Cp also has smallest C′

p.
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FIGURE 6.2. Cp, BIC, and adjusted R2 are shown for the best models of each
size for the Credit data set (the lower frontier in Figure 6.1). Cp and BIC are
estimates of test MSE. In the middle plot we see that the BIC estimate of test
error shows an increase after four variables are selected. The other two plots are
rather flat after four variables are included.

for the corresponding decrease in training RSS. Though it is beyond the
scope of this book, one can show that if σ̂2 is an unbiased estimate of σ2 in
(6.2), then Cp is an unbiased estimate of test MSE. As a consequence, the
Cp statistic tends to take on a small value for models with a low test error,
so when determining which of a set of models is best, we choose the model
with the lowest Cp value. In Figure 6.2, Cp selects the six-variable model
containing the predictors income, limit, rating, cards, age and student.

The AIC criterion is defined for a large class of models fit by maximum
likelihood. In the case of the model (6.1) with Gaussian errors, maximum
likelihood and least squares are the same thing. In this case AIC is given by

AIC =
1

n

(
RSS + 2dσ̂2

)
,

where, for simplicity, we have omitted irrelevant constants.5 Hence for least
squares models, Cp and AIC are proportional to each other, and so only
Cp is displayed in Figure 6.2.

BIC is derived from a Bayesian point of view, but ends up looking similar
to Cp (and AIC) as well. For the least squares model with d predictors, the
BIC is, up to irrelevant constants, given by

BIC =
1

n

(
RSS + log(n)dσ̂2

)
. (6.3)

Like Cp, the BIC will tend to take on a small value for a model with a
low test error, and so generally we select the model that has the lowest
BIC value. Notice that BIC replaces the 2dσ̂2 used by Cp with a log(n)dσ̂2

term, where n is the number of observations. Since log n > 2 for any n > 7,

5There are two formulas for AIC for least squares regression. The formula that we
provide here requires an expression for σ2, which we obtain using the full model con-
taining all predictors. The second formula is appropriate when σ2 is unknown and we do
not want to explicitly estimate it; that formula has a log(RSS) term instead of an RSS
term. Detailed derivations of these two formulas are outside of the scope of this book.
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the BIC statistic generally places a heavier penalty on models with many
variables, and hence results in the selection of smaller models than Cp.
In Figure 6.2, we see that this is indeed the case for the Credit data set;
BIC chooses a model that contains only the four predictors income, limit,
cards, and student. In this case the curves are very flat and so there does
not appear to be much difference in accuracy between the four-variable and
six-variable models.

The adjusted R2 statistic is another popular approach for selecting among
a set of models that contain different numbers of variables. Recall from
Chapter 3 that the usual R2 is defined as 1 − RSS/TSS, where TSS =∑

(yi − y)2 is the total sum of squares for the response. Since RSS always
decreases as more variables are added to the model, the R2 always increases
as more variables are added. For a least squares model with d variables,
the adjusted R2 statistic is calculated as

Adjusted R2 = 1− RSS/(n− d− 1)

TSS/(n− 1)
. (6.4)

Unlike Cp, AIC, and BIC, for which a small value indicates a model with
a low test error, a large value of adjusted R2 indicates a model with a
small test error. Maximizing the adjusted R2 is equivalent to minimizing
RSS

n−d−1 . While RSS always decreases as the number of variables in the model
increases, RSS

n−d−1 may increase or decrease, due to the presence of d in the
denominator.

The intuition behind the adjusted R2 is that once all of the correct
variables have been included in the model, adding additional noise variables
will lead to only a very small decrease in RSS. Since adding noise variables
leads to an increase in d, such variables will lead to an increase in RSS

n−d−1 ,
and consequently a decrease in the adjusted R2. Therefore, in theory, the
model with the largest adjusted R2 will have only correct variables and
no noise variables. Unlike the R2 statistic, the adjusted R2 statistic pays
a price for the inclusion of unnecessary variables in the model. Figure 6.2
displays the adjusted R2 for the Credit data set. Using this statistic results
in the selection of a model that contains seven variables, adding own to the
model selected by Cp and AIC.

Cp, AIC, and BIC all have rigorous theoretical justifications that are
beyond the scope of this book. These justifications rely on asymptotic ar-
guments (scenarios where the sample size n is very large). Despite its pop-
ularity, and even though it is quite intuitive, the adjusted R2 is not as well
motivated in statistical theory as AIC, BIC, and Cp. All of these measures
are simple to use and compute. Here we have presented their formulas in
the case of a linear model fit using least squares; however, AIC and BIC
can also be defined for more general types of models.

Validation and Cross-Validation
As an alternative to the approaches just discussed, we can directly esti-
mate the test error using the validation set and cross-validation methods
discussed in Chapter 5. We can compute the validation set error or the
cross-validation error for each model under consideration, and then select
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FIGURE 6.3. For the Credit data set, three quantities are displayed for the
best model containing d predictors, for d ranging from 1 to 11. The overall best
model, based on each of these quantities, is shown as a blue cross. Left: Square
root of BIC. Center: Validation set errors. Right: Cross-validation errors.

the model for which the resulting estimated test error is smallest. This pro-
cedure has an advantage relative to AIC, BIC, Cp, and adjusted R2, in that
it provides a direct estimate of the test error, and makes fewer assumptions
about the true underlying model. It can also be used in a wider range of
model selection tasks, even in cases where it is hard to pinpoint the model
degrees of freedom (e.g. the number of predictors in the model) or hard
to estimate the error variance σ2. Note that when cross-validation is used,
the sequence of models Mk in Algorithms 6.1–6.3 is determined separately
for each training fold, and the validation errors are averaged over all folds
for each model size k. This means, for example with best-subset regression,
that Mk, the best subset of size k, can differ across the folds. Once the
best size k is chosen, we find the best model of that size on the full data
set.

In the past, performing cross-validation was computationally prohibitive
for many problems with large p and/or large n, and so AIC, BIC, Cp,
and adjusted R2 were more attractive approaches for choosing among a
set of models. However, nowadays with fast computers, the computations
required to perform cross-validation are hardly ever an issue. Thus, cross-
validation is a very attractive approach for selecting from among a number
of models under consideration.

Figure 6.3 displays, as a function of d, the BIC, validation set errors, and
cross-validation errors on the Credit data, for the best d-variable model.
The validation errors were calculated by randomly selecting three-quarters
of the observations as the training set, and the remainder as the valida-
tion set. The cross-validation errors were computed using k = 10 folds.
In this case, the validation and cross-validation methods both result in a
six-variable model. However, all three approaches suggest that the four-,
five-, and six-variable models are roughly equivalent in terms of their test
errors.

In fact, the estimated test error curves displayed in the center and right-
hand panels of Figure 6.3 are quite flat. While a three-variable model clearly
has lower estimated test error than a two-variable model, the estimated test
errors of the 3- to 11-variable models are quite similar. Furthermore, if we
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repeated the validation set approach using a different split of the data into
a training set and a validation set, or if we repeated cross-validation using
a different set of cross-validation folds, then the precise model with the
lowest estimated test error would surely change. In this setting, we can
select a model using the one-standard-error rule. We first calculate the one-

standard-
error
rule

standard error of the estimated test MSE for each model size, and then
select the smallest model for which the estimated test error is within one
standard error of the lowest point on the curve. The rationale here is that
if a set of models appear to be more or less equally good, then we might
as well choose the simplest model—that is, the model with the smallest
number of predictors. In this case, applying the one-standard-error rule
to the validation set or cross-validation approach leads to selection of the
three-variable model.

6.2 Shrinkage Methods
The subset selection methods described in Section 6.1 involve using least
squares to fit a linear model that contains a subset of the predictors. As an
alternative, we can fit a model containing all p predictors using a technique
that constrains or regularizes the coefficient estimates, or equivalently, that
shrinks the coefficient estimates towards zero. It may not be immediately
obvious why such a constraint should improve the fit, but it turns out that
shrinking the coefficient estimates can significantly reduce their variance.
The two best-known techniques for shrinking the regression coefficients
towards zero are ridge regression and the lasso.

6.2.1 Ridge Regression
Recall from Chapter 3 that the least squares fitting procedure estimates
β0,β1, . . . ,βp using the values that minimize

RSS =
n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

.

Ridge regression is very similar to least squares, except that the coefficients ridge
regressionare estimated by minimizing a slightly different quantity. In particular, the

ridge regression coefficient estimates β̂R are the values that minimize

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

β2
j = RSS + λ

p∑

j=1

β2
j , (6.5)

where λ ≥ 0 is a tuning parameter, to be determined separately. Equa- tuning
parametertion 6.5 trades off two different criteria. As with least squares, ridge regres-

sion seeks coefficient estimates that fit the data well, by making the RSS
small. However, the second term, λ

∑
j β

2
j , called a shrinkage penalty, is shrinkage

penaltysmall when β1, . . . ,βp are close to zero, and so it has the effect of shrinking
the estimates of βj towards zero. The tuning parameter λ serves to control
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FIGURE 6.4. The standardized ridge regression coefficients are displayed for
the Credit data set, as a function of λ and ‖β̂R

λ ‖2/‖β̂‖2.

the relative impact of these two terms on the regression coefficient esti-
mates. When λ = 0, the penalty term has no effect, and ridge regression
will produce the least squares estimates. However, as λ→∞, the impact of
the shrinkage penalty grows, and the ridge regression coefficient estimates
will approach zero. Unlike least squares, which generates only one set of co-
efficient estimates, ridge regression will produce a different set of coefficient
estimates, β̂R

λ , for each value of λ. Selecting a good value for λ is critical;
we defer this discussion to Section 6.2.3, where we use cross-validation.

Note that in (6.5), the shrinkage penalty is applied to β1, . . . ,βp, but
not to the intercept β0. We want to shrink the estimated association of
each variable with the response; however, we do not want to shrink the
intercept, which is simply a measure of the mean value of the response
when xi1 = xi2 = . . . = xip = 0. If we assume that the variables—that is,
the columns of the data matrix X—have been centered to have mean zero
before ridge regression is performed, then the estimated intercept will take
the form β̂0 = ȳ =

∑n
i=1 yi/n.

An Application to the Credit Data
In Figure 6.4, the ridge regression coefficient estimates for the Credit data
set are displayed. In the left-hand panel, each curve corresponds to the
ridge regression coefficient estimate for one of the ten variables, plotted
as a function of λ. For example, the black solid line represents the ridge
regression estimate for the income coefficient, as λ is varied. At the extreme
left-hand side of the plot, λ is essentially zero, and so the corresponding
ridge coefficient estimates are the same as the usual least squares esti-
mates. But as λ increases, the ridge coefficient estimates shrink towards
zero. When λ is extremely large, then all of the ridge coefficient estimates
are basically zero; this corresponds to the null model that contains no pre-
dictors. In this plot, the income, limit, rating, and student variables are
displayed in distinct colors, since these variables tend to have by far the
largest coefficient estimates. While the ridge coefficient estimates tend to
decrease in aggregate as λ increases, individual coefficients, such as rating
and income, may occasionally increase as λ increases.
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The right-hand panel of Figure 6.4 displays the same ridge coefficient
estimates as the left-hand panel, but instead of displaying λ on the x-axis,
we now display ‖β̂R

λ ‖2/‖β̂‖2, where β̂ denotes the vector of least squares
coefficient estimates. The notation ‖β‖2 denotes the %2 norm (pronounced

"2 norm
“ell 2”) of a vector, and is defined as ‖β‖2 =

√∑p
j=1 βj

2. It measures the
distance of β from zero. As λ increases, the %2 norm of β̂R

λ will always
decrease, and so will ‖β̂R

λ ‖2/‖β̂‖2. The latter quantity ranges from 1 (when
λ = 0, in which case the ridge regression coefficient estimate is the same
as the least squares estimate, and so their %2 norms are the same) to 0
(when λ = ∞, in which case the ridge regression coefficient estimate is a
vector of zeros, with %2 norm equal to zero). Therefore, we can think of the
x-axis in the right-hand panel of Figure 6.4 as the amount that the ridge
regression coefficient estimates have been shrunken towards zero; a small
value indicates that they have been shrunken very close to zero.

The standard least squares coefficient estimates discussed in Chapter 3
are scale equivariant: multiplying Xj by a constant c simply leads to a scale

equivariantscaling of the least squares coefficient estimates by a factor of 1/c. In other
words, regardless of how the jth predictor is scaled, Xj β̂j will remain the
same. In contrast, the ridge regression coefficient estimates can change sub-
stantially when multiplying a given predictor by a constant. For instance,
consider the income variable, which is measured in dollars. One could rea-
sonably have measured income in thousands of dollars, which would result
in a reduction in the observed values of income by a factor of 1,000. Now due
to the sum of squared coefficients term in the ridge regression formulation
(6.5), such a change in scale will not simply cause the ridge regression co-
efficient estimate for income to change by a factor of 1,000. In other words,
Xj β̂R

j,λ will depend not only on the value of λ, but also on the scaling of the
jth predictor. In fact, the value of Xj β̂R

j,λ may even depend on the scaling
of the other predictors! Therefore, it is best to apply ridge regression after
standardizing the predictors, using the formula

x̃ij =
xij√

1
n

∑n
i=1(xij − xj)2

, (6.6)

so that they are all on the same scale. In (6.6), the denominator is the
estimated standard deviation of the jth predictor. Consequently, all of the
standardized predictors will have a standard deviation of one. As a re-
sult the final fit will not depend on the scale on which the predictors are
measured. In Figure 6.4, the y-axis displays the standardized ridge regres-
sion coefficient estimates—that is, the coefficient estimates that result from
performing ridge regression using standardized predictors.

Why Does Ridge Regression Improve Over Least Squares?
Ridge regression’s advantage over least squares is rooted in the bias-variance
trade-off. As λ increases, the flexibility of the ridge regression fit decreases,
leading to decreased variance but increased bias. This is illustrated in the
left-hand panel of Figure 6.5, using a simulated data set containing p = 45
predictors and n = 50 observations. The green curve in the left-hand panel



6.2 Shrinkage Methods 243

1e−01 1e+01 1e+03

0
10

20
30

40
50

60

M
ea

n 
Sq

ua
re

d 
Er

ro
r

0.0 0.2 0.4 0.6 0.8 1.0

0
10

20
30

40
50

60

M
ea

n 
Sq

ua
re

d 
Er

ro
r

λ ‖β̂R
λ
‖2/‖β̂‖2

FIGURE 6.5. Squared bias (black), variance (green), and test mean squared
error (purple) for the ridge regression predictions on a simulated data set, as a
function of λ and ‖β̂R

λ ‖2/‖β̂‖2. The horizontal dashed lines indicate the minimum
possible MSE. The purple crosses indicate the ridge regression models for which
the MSE is smallest.

of Figure 6.5 displays the variance of the ridge regression predictions as a
function of λ. At the least squares coefficient estimates, which correspond
to ridge regression with λ = 0, the variance is high but there is no bias. But
as λ increases, the shrinkage of the ridge coefficient estimates leads to a
substantial reduction in the variance of the predictions, at the expense of a
slight increase in bias. Recall that the test mean squared error (MSE), plot-
ted in purple, is closely related to the variance plus the squared bias. For
values of λ up to about 10, the variance decreases rapidly, with very little
increase in bias, plotted in black. Consequently, the MSE drops consider-
ably as λ increases from 0 to 10. Beyond this point, the decrease in variance
due to increasing λ slows, and the shrinkage on the coefficients causes them
to be significantly underestimated, resulting in a large increase in the bias.
The minimum MSE is achieved at approximately λ = 30. Interestingly,
because of its high variance, the MSE associated with the least squares
fit, when λ = 0, is almost as high as that of the null model for which all
coefficient estimates are zero, when λ = ∞. However, for an intermediate
value of λ, the MSE is considerably lower.

The right-hand panel of Figure 6.5 displays the same curves as the left-
hand panel, this time plotted against the %2 norm of the ridge regression
coefficient estimates divided by the %2 norm of the least squares estimates.
Now as we move from left to right, the fits become more flexible, and so
the bias decreases and the variance increases.

In general, in situations where the relationship between the response
and the predictors is close to linear, the least squares estimates will have
low bias but may have high variance. This means that a small change in
the training data can cause a large change in the least squares coefficient
estimates. In particular, when the number of variables p is almost as large
as the number of observations n, as in the example in Figure 6.5, the
least squares estimates will be extremely variable. And if p > n, then the
least squares estimates do not even have a unique solution, whereas ridge
regression can still perform well by trading off a small increase in bias for a
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large decrease in variance. Hence, ridge regression works best in situations
where the least squares estimates have high variance.

Ridge regression also has substantial computational advantages over best
subset selection, which requires searching through 2p models. As we dis-
cussed previously, even for moderate values of p, such a search can be
computationally infeasible. In contrast, for any fixed value of λ, ridge re-
gression only fits a single model, and the model-fitting procedure can be
performed quite quickly. In fact, one can show that the computations re-
quired to solve (6.5), simultaneously for all values of λ, are almost identical
to those for fitting a model using least squares.

6.2.2 The Lasso
Ridge regression does have one obvious disadvantage. Unlike best subset,
forward stepwise, and backward stepwise selection, which will generally
select models that involve just a subset of the variables, ridge regression
will include all p predictors in the final model. The penalty λ

∑
β2
j in (6.5)

will shrink all of the coefficients towards zero, but it will not set any of them
exactly to zero (unless λ =∞). This may not be a problem for prediction
accuracy, but it can create a challenge in model interpretation in settings in
which the number of variables p is quite large. For example, in the Credit
data set, it appears that the most important variables are income, limit,
rating, and student. So we might wish to build a model including just
these predictors. However, ridge regression will always generate a model
involving all ten predictors. Increasing the value of λ will tend to reduce
the magnitudes of the coefficients, but will not result in exclusion of any of
the variables.

The lasso is a relatively recent alternative to ridge regression that over- lassocomes this disadvantage. The lasso coefficients, β̂L
λ , minimize the quantity

n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2

+ λ
p∑

j=1

|βj | = RSS + λ
p∑

j=1

|βj |. (6.7)

Comparing (6.7) to (6.5), we see that the lasso and ridge regression have
similar formulations. The only difference is that the β2

j term in the ridge
regression penalty (6.5) has been replaced by |βj | in the lasso penalty (6.7).
In statistical parlance, the lasso uses an %1 (pronounced “ell 1”) penalty
instead of an %2 penalty. The %1 norm of a coefficient vector β is given by
‖β‖1 =

∑
|βj |.

As with ridge regression, the lasso shrinks the coefficient estimates to-
wards zero. However, in the case of the lasso, the %1 penalty has the effect
of forcing some of the coefficient estimates to be exactly equal to zero when
the tuning parameter λ is sufficiently large. Hence, much like best subset se-
lection, the lasso performs variable selection. As a result, models generated
from the lasso are generally much easier to interpret than those produced
by ridge regression. We say that the lasso yields sparse models—that is, sparse
models that involve only a subset of the variables. As in ridge regression,
selecting a good value of λ for the lasso is critical; we defer this discussion
to Section 6.2.3, where we use cross-validation.
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FIGURE 6.6. The standardized lasso coefficients on the Credit data set are
shown as a function of λ and ‖β̂L

λ ‖1/‖β̂‖1.

As an example, consider the coefficient plots in Figure 6.6, which are gen-
erated from applying the lasso to the Credit data set. When λ = 0, then
the lasso simply gives the least squares fit, and when λ becomes sufficiently
large, the lasso gives the null model in which all coefficient estimates equal
zero. However, in between these two extremes, the ridge regression and
lasso models are quite different from each other. Moving from left to right
in the right-hand panel of Figure 6.6, we observe that at first the lasso re-
sults in a model that contains only the rating predictor. Then student and
limit enter the model almost simultaneously, shortly followed by income.
Eventually, the remaining variables enter the model. Hence, depending on
the value of λ, the lasso can produce a model involving any number of vari-
ables. In contrast, ridge regression will always include all of the variables in
the model, although the magnitude of the coefficient estimates will depend
on λ.

Another Formulation for Ridge Regression and the Lasso
One can show that the lasso and ridge regression coefficient estimates solve
the problems

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

|βj | ≤ s

(6.8)
and

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

β2
j ≤ s,

(6.9)
respectively. In other words, for every value of λ, there is some s such that
the Equations (6.7) and (6.8) will give the same lasso coefficient estimates.
Similarly, for every value of λ there is a corresponding s such that Equa-
tions (6.5) and (6.9) will give the same ridge regression coefficient estimates.
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When p = 2, then (6.8) indicates that the lasso coefficient estimates have
the smallest RSS out of all points that lie within the diamond defined by
|β1| + |β2| ≤ s. Similarly, the ridge regression estimates have the smallest
RSS out of all points that lie within the circle defined by β2

1 + β2
2 ≤ s.

We can think of (6.8) as follows. When we perform the lasso we are trying
to find the set of coefficient estimates that lead to the smallest RSS, subject
to the constraint that there is a budget s for how large

∑p
j=1 |βj | can be.

When s is extremely large, then this budget is not very restrictive, and so
the coefficient estimates can be large. In fact, if s is large enough that the
least squares solution falls within the budget, then (6.8) will simply yield
the least squares solution. In contrast, if s is small, then

∑p
j=1 |βj | must be

small in order to avoid violating the budget. Similarly, (6.9) indicates that
when we perform ridge regression, we seek a set of coefficient estimates
such that the RSS is as small as possible, subject to the requirement that∑p

j=1 β
2
j not exceed the budget s.

The formulations (6.8) and (6.9) reveal a close connection between the
lasso, ridge regression, and best subset selection. Consider the problem

minimize
β






n∑

i=1



yi − β0 −
p∑

j=1

βjxij




2




subject to

p∑

j=1

I(βj (= 0) ≤ s.

(6.10)
Here I(βj (= 0) is an indicator variable: it takes on a value of 1 if βj (= 0, and
equals zero otherwise. Then (6.10) amounts to finding a set of coefficient
estimates such that RSS is as small as possible, subject to the constraint
that no more than s coefficients can be nonzero. The problem (6.10) is
equivalent to best subset selection. Unfortunately, solving (6.10) is com-
putationally infeasible when p is large, since it requires considering all

(p
s

)

models containing s predictors. Therefore, we can interpret ridge regression
and the lasso as computationally feasible alternatives to best subset selec-
tion that replace the intractable form of the budget in (6.10) with forms
that are much easier to solve. Of course, the lasso is much more closely
related to best subset selection, since the lasso performs feature selection
for s sufficiently small in (6.8), while ridge regression does not.

The Variable Selection Property of the Lasso
Why is it that the lasso, unlike ridge regression, results in coefficient esti-
mates that are exactly equal to zero? The formulations (6.8) and (6.9) can
be used to shed light on the issue. Figure 6.7 illustrates the situation. The
least squares solution is marked as β̂, while the blue diamond and circle
represent the lasso and ridge regression constraints in (6.8) and (6.9), re-
spectively. If s is sufficiently large, then the constraint regions will contain
β̂, and so the ridge regression and lasso estimates will be the same as the
least squares estimates. (Such a large value of s corresponds to λ = 0 in
(6.5) and (6.7).) However, in Figure 6.7 the least squares estimates lie out-
side of the diamond and the circle, and so the least squares estimates are
not the same as the lasso and ridge regression estimates.

Each of the ellipses centered around β̂ represents a contour: this means contourthat all of the points on a particular ellipse have the same RSS value. As
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FIGURE 6.7. Contours of the error and constraint functions for the lasso
(left) and ridge regression (right). The solid blue areas are the constraint regions,
|β1|+ |β2| ≤ s and β2

1 +β2
2 ≤ s, while the red ellipses are the contours of the RSS.

the ellipses expand away from the least squares coefficient estimates, the
RSS increases. Equations (6.8) and (6.9) indicate that the lasso and ridge
regression coefficient estimates are given by the first point at which an
ellipse contacts the constraint region. Since ridge regression has a circular
constraint with no sharp points, this intersection will not generally occur on
an axis, and so the ridge regression coefficient estimates will be exclusively
non-zero. However, the lasso constraint has corners at each of the axes, and
so the ellipse will often intersect the constraint region at an axis. When this
occurs, one of the coefficients will equal zero. In higher dimensions, many of
the coefficient estimates may equal zero simultaneously. In Figure 6.7, the
intersection occurs at β1 = 0, and so the resulting model will only include
β2.

In Figure 6.7, we considered the simple case of p = 2. When p = 3,
then the constraint region for ridge regression becomes a sphere, and the
constraint region for the lasso becomes a polyhedron. When p > 3, the
constraint for ridge regression becomes a hypersphere, and the constraint
for the lasso becomes a polytope. However, the key ideas depicted in Fig-
ure 6.7 still hold. In particular, the lasso leads to feature selection when
p > 2 due to the sharp corners of the polyhedron or polytope.

Comparing the Lasso and Ridge Regression
It is clear that the lasso has a major advantage over ridge regression, in
that it produces simpler and more interpretable models that involve only a
subset of the predictors. However, which method leads to better prediction
accuracy? Figure 6.8 displays the variance, squared bias, and test MSE of
the lasso applied to the same simulated data as in Figure 6.5. Clearly the
lasso leads to qualitatively similar behavior to ridge regression, in that as λ
increases, the variance decreases and the bias increases. In the right-hand
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FIGURE 6.8. Left: Plots of squared bias (black), variance (green), and test
MSE (purple) for the lasso on a simulated data set. Right: Comparison of squared
bias, variance, and test MSE between lasso (solid) and ridge (dotted). Both are
plotted against their R2 on the training data, as a common form of indexing. The
crosses in both plots indicate the lasso model for which the MSE is smallest.

panel of Figure 6.8, the dotted lines represent the ridge regression fits.
Here we plot both against their R2 on the training data. This is another
useful way to index models, and can be used to compare models with
different types of regularization, as is the case here. In this example, the
lasso and ridge regression result in almost identical biases. However, the
variance of ridge regression is slightly lower than the variance of the lasso.
Consequently, the minimum MSE of ridge regression is slightly smaller than
that of the lasso.

However, the data in Figure 6.8 were generated in such a way that all 45
predictors were related to the response—that is, none of the true coefficients
β1, . . . ,β45 equaled zero. The lasso implicitly assumes that a number of the
coefficients truly equal zero. Consequently, it is not surprising that ridge
regression outperforms the lasso in terms of prediction error in this setting.
Figure 6.9 illustrates a similar situation, except that now the response is a
function of only 2 out of 45 predictors. Now the lasso tends to outperform
ridge regression in terms of bias, variance, and MSE.

These two examples illustrate that neither ridge regression nor the lasso
will universally dominate the other. In general, one might expect the lasso
to perform better in a setting where a relatively small number of predictors
have substantial coefficients, and the remaining predictors have coefficients
that are very small or that equal zero. Ridge regression will perform better
when the response is a function of many predictors, all with coefficients of
roughly equal size. However, the number of predictors that is related to the
response is never known a priori for real data sets. A technique such as
cross-validation can be used in order to determine which approach is better
on a particular data set.

As with ridge regression, when the least squares estimates have exces-
sively high variance, the lasso solution can yield a reduction in variance
at the expense of a small increase in bias, and consequently can gener-
ate more accurate predictions. Unlike ridge regression, the lasso performs
variable selection, and hence results in models that are easier to interpret.
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FIGURE 6.9. Left: Plots of squared bias (black), variance (green), and test
MSE (purple) for the lasso. The simulated data is similar to that in Figure 6.8,
except that now only two predictors are related to the response. Right: Comparison
of squared bias, variance, and test MSE between lasso (solid) and ridge (dotted).
Both are plotted against their R2 on the training data, as a common form of
indexing. The crosses in both plots indicate the lasso model for which the MSE is
smallest.

There are very efficient algorithms for fitting both ridge and lasso models;
in both cases the entire coefficient paths can be computed with about the
same amount of work as a single least squares fit. We will explore this
further in the lab at the end of this chapter.

A Simple Special Case for Ridge Regression and the Lasso
In order to obtain a better intuition about the behavior of ridge regression
and the lasso, consider a simple special case with n = p, and X a diag-
onal matrix with 1’s on the diagonal and 0’s in all off-diagonal elements.
To simplify the problem further, assume also that we are performing regres-
sion without an intercept. With these assumptions, the usual least squares
problem simplifies to finding β1, . . . ,βp that minimize

p∑

j=1

(yj − βj)
2. (6.11)

In this case, the least squares solution is given by

β̂j = yj .

And in this setting, ridge regression amounts to finding β1, . . . ,βp such that

p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

β2
j (6.12)

is minimized, and the lasso amounts to finding the coefficients such that
p∑

j=1

(yj − βj)
2 + λ

p∑

j=1

|βj | (6.13)
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FIGURE 6.10. The ridge regression and lasso coefficient estimates for a simple
setting with n = p and X a diagonal matrix with 1’s on the diagonal. Left: The
ridge regression coefficient estimates are shrunken proportionally towards zero,
relative to the least squares estimates. Right: The lasso coefficient estimates are
soft-thresholded towards zero.

is minimized. One can show that in this setting, the ridge regression esti-
mates take the form

β̂R
j = yj/(1 + λ), (6.14)

and the lasso estimates take the form

β̂L
j =






yj − λ/2 if yj > λ/2;

yj + λ/2 if yj < −λ/2;
0 if |yj | ≤ λ/2.

(6.15)

Figure 6.10 displays the situation. We can see that ridge regression and
the lasso perform two very different types of shrinkage. In ridge regression,
each least squares coefficient estimate is shrunken by the same proportion.
In contrast, the lasso shrinks each least squares coefficient towards zero by
a constant amount, λ/2; the least squares coefficients that are less than
λ/2 in absolute value are shrunken entirely to zero. The type of shrink-
age performed by the lasso in this simple setting (6.15) is known as soft-
thresholding. The fact that some lasso coefficients are shrunken entirely to soft-

thresholdingzero explains why the lasso performs feature selection.
In the case of a more general data matrix X, the story is a little more

complicated than what is depicted in Figure 6.10, but the main ideas still
hold approximately: ridge regression more or less shrinks every dimension
of the data by the same proportion, whereas the lasso more or less shrinks
all coefficients toward zero by a similar amount, and sufficiently small co-
efficients are shrunken all the way to zero.

Bayesian Interpretation of Ridge Regression and the Lasso

We now show that one can view ridge regression and the lasso through
a Bayesian lens. A Bayesian viewpoint for regression assumes that the
coefficient vector β has some prior distribution, say p(β), where β =
(β0,β1, . . . ,βp)T . The likelihood of the data can be written as f(Y |X,β),
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FIGURE 6.11. Left: Ridge regression is the posterior mode for β under a Gaus-
sian prior. Right: The lasso is the posterior mode for β under a double-exponential
prior.

where X = (X1, . . . , Xp). Multiplying the prior distribution by the likeli-
hood gives us (up to a proportionality constant) the posterior distribution, posterior

distributionwhich takes the form

p(β|X,Y ) ∝ f(Y |X,β)p(β|X) = f(Y |X,β)p(β),

where the proportionality above follows from Bayes’ theorem, and the
equality above follows from the assumption that X is fixed.

We assume the usual linear model,

Y = β0 +X1β1 + · · ·+Xpβp + ε,

and suppose that the errors are independent and drawn from a normal dis-
tribution. Furthermore, assume that p(β) =

∏p
j=1 g(βj), for some density

function g. It turns out that ridge regression and the lasso follow naturally
from two special cases of g:

• If g is a Gaussian distribution with mean zero and standard deviation
a function of λ, then it follows that the posterior mode for β—that posterior

modeis, the most likely value for β, given the data—is given by the ridge
regression solution. (In fact, the ridge regression solution is also the
posterior mean.)

• If g is a double-exponential (Laplace) distribution with mean zero
and scale parameter a function of λ, then it follows that the posterior
mode for β is the lasso solution. (However, the lasso solution is not
the posterior mean, and in fact, the posterior mean does not yield a
sparse coefficient vector.)

The Gaussian and double-exponential priors are displayed in Figure 6.11.
Therefore, from a Bayesian viewpoint, ridge regression and the lasso follow
directly from assuming the usual linear model with normal errors, together
with a simple prior distribution for β. Notice that the lasso prior is steeply
peaked at zero, while the Gaussian is flatter and fatter at zero. Hence, the
lasso expects a priori that many of the coefficients are (exactly) zero, while
ridge assumes the coefficients are randomly distributed about zero.
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FIGURE 6.12. Left: Cross-validation errors that result from applying ridge
regression to the Credit data set with various values of λ. Right: The coefficient
estimates as a function of λ. The vertical dashed lines indicate the value of λ
selected by cross-validation.

6.2.3 Selecting the Tuning Parameter
Just as the subset selection approaches considered in Section 6.1 require
a method to determine which of the models under consideration is best,
implementing ridge regression and the lasso requires a method for selecting
a value for the tuning parameter λ in (6.5) and (6.7), or equivalently, the
value of the constraint s in (6.9) and (6.8). Cross-validation provides a sim-
ple way to tackle this problem. We choose a grid of λ values, and compute
the cross-validation error for each value of λ, as described in Chapter 5. We
then select the tuning parameter value for which the cross-validation error
is smallest. Finally, the model is re-fit using all of the available observations
and the selected value of the tuning parameter.

Figure 6.12 displays the choice of λ that results from performing leave-
one-out cross-validation on the ridge regression fits from the Credit data
set. The dashed vertical lines indicate the selected value of λ. In this case
the value is relatively small, indicating that the optimal fit only involves a
small amount of shrinkage relative to the least squares solution. In addition,
the dip is not very pronounced, so there is rather a wide range of values
that would give a very similar error. In a case like this we might simply use
the least squares solution.

Figure 6.13 provides an illustration of ten-fold cross-validation applied to
the lasso fits on the sparse simulated data from Figure 6.9. The left-hand
panel of Figure 6.13 displays the cross-validation error, while the right-hand
panel displays the coefficient estimates. The vertical dashed lines indicate
the point at which the cross-validation error is smallest. The two colored
lines in the right-hand panel of Figure 6.13 represent the two predictors
that are related to the response, while the grey lines represent the unre-
lated predictors; these are often referred to as signal and noise variables, signalrespectively. Not only has the lasso correctly given much larger coeffi-
cient estimates to the two signal predictors, but also the minimum cross-
validation error corresponds to a set of coefficient estimates for which only
the signal variables are non-zero. Hence cross-validation together with the
lasso has correctly identified the two signal variables in the model, even
though this is a challenging setting, with p = 45 variables and only n = 50
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FIGURE 6.13. Left: Ten-fold cross-validation MSE for the lasso, applied to
the sparse simulated data set from Figure 6.9. Right: The corresponding lasso
coefficient estimates are displayed. The two signal variables are shown in color,
and the noise variables are in gray. The vertical dashed lines indicate the lasso
fit for which the cross-validation error is smallest.

observations. In contrast, the least squares solution—displayed on the far
right of the right-hand panel of Figure 6.13—assigns a large coefficient
estimate to only one of the two signal variables.

6.3 Dimension Reduction Methods
The methods that we have discussed so far in this chapter have controlled
variance in two different ways, either by using a subset of the original vari-
ables, or by shrinking their coefficients toward zero. All of these methods
are defined using the original predictors, X1, X2, . . . , Xp. We now explore
a class of approaches that transform the predictors and then fit a least
squares model using the transformed variables. We will refer to these tech-
niques as dimension reduction methods. dimension

reductionLet Z1, Z2, . . . , ZM represent M < p linear combinations of our original
linear
combination

p predictors. That is,

Zm =
p∑

j=1

φjmXj (6.16)

for some constants φ1m,φ2m . . . ,φpm, m = 1, . . . ,M . We can then fit the
linear regression model

yi = θ0 +
M∑

m=1

θmzim + εi, i = 1, . . . , n, (6.17)

using least squares. Note that in (6.17), the regression coefficients are given
by θ0, θ1, . . . , θM . If the constants φ1m,φ2m, . . . ,φpm are chosen wisely, then
such dimension reduction approaches can often outperform least squares
regression. In other words, fitting (6.17) using least squares can lead to
better results than fitting (6.1) using least squares.

The term dimension reduction comes from the fact that this approach
reduces the problem of estimating the p+1 coefficients β0,β1, . . . ,βp to the
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FIGURE 6.14. The population size (pop) and ad spending (ad) for 100 different
cities are shown as purple circles. The green solid line indicates the first principal
component, and the blue dashed line indicates the second principal component.

simpler problem of estimating the M + 1 coefficients θ0, θ1, . . . , θM , where
M < p. In other words, the dimension of the problem has been reduced
from p+ 1 to M + 1.

Notice that from (6.16),
M∑

m=1

θmzim =
M∑

m=1

θm

p∑

j=1

φjmxij =
p∑

j=1

M∑

m=1

θmφjmxij =
p∑

j=1

βjxij ,

where

βj =
M∑

m=1

θmφjm. (6.18)

Hence (6.17) can be thought of as a special case of the original linear
regression model given by (6.1). Dimension reduction serves to constrain
the estimated βj coefficients, since now they must take the form (6.18).
This constraint on the form of the coefficients has the potential to bias the
coefficient estimates. However, in situations where p is large relative to n,
selecting a value of M * p can significantly reduce the variance of the fitted
coefficients. If M = p, and all the Zm are linearly independent, then (6.18)
poses no constraints. In this case, no dimension reduction occurs, and so
fitting (6.17) is equivalent to performing least squares on the original p
predictors.

All dimension reduction methods work in two steps. First, the trans-
formed predictors Z1, Z2, . . . , ZM are obtained. Second, the model is fit
using these M predictors. However, the choice of Z1, Z2, . . . , ZM , or equiv-
alently, the selection of the φjm’s, can be achieved in different ways. In this
chapter, we will consider two approaches for this task: principal components
and partial least squares.

6.3.1 Principal Components Regression
Principal components analysis (PCA) is a popular approach for deriving principal

components
analysis
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a low-dimensional set of features from a large set of variables. PCA is
discussed in greater detail as a tool for unsupervised learning in Chapter 12.
Here we describe its use as a dimension reduction technique for regression.

An Overview of Principal Components Analysis
PCA is a technique for reducing the dimension of an n× p data matrix X.
The first principal component direction of the data is that along which the
observations vary the most. For instance, consider Figure 6.14, which shows
population size (pop) in tens of thousands of people, and ad spending for a
particular company (ad) in thousands of dollars, for 100 cities.6 The green
solid line represents the first principal component direction of the data. We
can see by eye that this is the direction along which there is the greatest
variability in the data. That is, if we projected the 100 observations onto
this line (as shown in the left-hand panel of Figure 6.15), then the resulting
projected observations would have the largest possible variance; projecting
the observations onto any other line would yield projected observations
with lower variance. Projecting a point onto a line simply involves finding
the location on the line which is closest to the point.

The first principal component is displayed graphically in Figure 6.14, but
how can it be summarized mathematically? It is given by the formula

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad). (6.19)

Here φ11 = 0.839 and φ21 = 0.544 are the principal component loadings,
which define the direction referred to above. In (6.19), pop indicates the
mean of all pop values in this data set, and ad indicates the mean of all ad-
vertising spending. The idea is that out of every possible linear combination
of pop and ad such that φ2

11 + φ2
21 = 1, this particular linear combination

yields the highest variance: i.e. this is the linear combination for which
Var(φ11 × (pop − pop) + φ21 × (ad − ad)) is maximized. It is necessary to
consider only linear combinations of the form φ2

11+φ2
21 = 1, since otherwise

we could increase φ11 and φ21 arbitrarily in order to blow up the variance.
In (6.19), the two loadings are both positive and have similar size, and so
Z1 is almost an average of the two variables.

Since n = 100, pop and ad are vectors of length 100, and so is Z1 in
(6.19). For instance,

zi1 = 0.839× (popi − pop) + 0.544× (adi − ad). (6.20)

The values of z11, . . . , zn1 are known as the principal component scores, and
can be seen in the right-hand panel of Figure 6.15.

There is also another interpretation of PCA: the first principal compo-
nent vector defines the line that is as close as possible to the data. For
instance, in Figure 6.14, the first principal component line minimizes the
sum of the squared perpendicular distances between each point and the
line. These distances are plotted as dashed line segments in the left-hand

6This dataset is distinct from the Advertising data discussed in Chapter 3.
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FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop, ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the x-axis.

panel of Figure 6.15, in which the crosses represent the projection of each
point onto the first principal component line. The first principal component
has been chosen so that the projected observations are as close as possible
to the original observations.

In the right-hand panel of Figure 6.15, the left-hand panel has been
rotated so that the first principal component direction coincides with the
x-axis. It is possible to show that the first principal component score for
the ith observation, given in (6.20), is the distance in the x-direction of the
ith cross from zero. So for example, the point in the bottom-left corner of
the left-hand panel of Figure 6.15 has a large negative principal component
score, zi1 = −26.1, while the point in the top-right corner has a large
positive score, zi1 = 18.7. These scores can be computed directly using
(6.20).

We can think of the values of the principal component Z1 as single-
number summaries of the joint pop and ad budgets for each location. In
this example, if zi1 = 0.839 × (popi − pop) + 0.544 × (adi − ad) < 0,
then this indicates a city with below-average population size and below-
average ad spending. A positive score suggests the opposite. How well can a
single number represent both pop and ad? In this case, Figure 6.14 indicates
that pop and ad have approximately a linear relationship, and so we might
expect that a single-number summary will work well. Figure 6.16 displays
zi1 versus both pop and ad.7 The plots show a strong relationship between
the first principal component and the two features. In other words, the first
principal component appears to capture most of the information contained
in the pop and ad predictors.

So far we have concentrated on the first principal component. In gen-
eral, one can construct up to p distinct principal components. The second

7The principal components were calculated after first standardizing both pop and ad,
a common approach. Hence, the x-axes on Figures 6.15 and 6.16 are not on the same
scale.
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FIGURE 6.16. Plots of the first principal component scores zi1 versus pop and
ad. The relationships are strong.

principal component Z2 is a linear combination of the variables that is un-
correlated with Z1, and has largest variance subject to this constraint. The
second principal component direction is illustrated as a dashed blue line in
Figure 6.14. It turns out that the zero correlation condition of Z1 with Z2

is equivalent to the condition that the direction must be perpendicular, or perpen-
dicularorthogonal, to the first principal component direction. The second principal
orthogonalcomponent is given by the formula

Z2 = 0.544× (pop− pop)− 0.839× (ad− ad).

Since the advertising data has two predictors, the first two principal com-
ponents contain all of the information that is in pop and ad. However, by
construction, the first component will contain the most information. Con-
sider, for example, the much larger variability of zi1 (the x-axis) versus
zi2 (the y-axis) in the right-hand panel of Figure 6.15. The fact that the
second principal component scores are much closer to zero indicates that
this component captures far less information. As another illustration, Fig-
ure 6.17 displays zi2 versus pop and ad. There is little relationship between
the second principal component and these two predictors, again suggesting
that in this case, one only needs the first principal component in order to
accurately represent the pop and ad budgets.

With two-dimensional data, such as in our advertising example, we can
construct at most two principal components. However, if we had other
predictors, such as population age, income level, education, and so forth,
then additional components could be constructed. They would successively
maximize variance, subject to the constraint of being uncorrelated with the
preceding components.

The Principal Components Regression Approach
The principal components regression (PCR) approach involves construct- principal

components
regression

ing the first M principal components, Z1, . . . , ZM , and then using these
components as the predictors in a linear regression model that is fit us-
ing least squares. The key idea is that often a small number of principal
components suffice to explain most of the variability in the data, as well
as the relationship with the response. In other words, we assume that the
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FIGURE 6.17. Plots of the second principal component scores zi2 versus pop
and ad. The relationships are weak.
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FIGURE 6.18. PCR was applied to two simulated data sets. In each panel, the
horizontal dashed line represents the irreducible error. Left: Simulated data from
Figure 6.8. Right: Simulated data from Figure 6.9.

directions in which X1, . . . , Xp show the most variation are the directions
that are associated with Y . While this assumption is not guaranteed to be
true, it often turns out to be a reasonable enough approximation to give
good results.

If the assumption underlying PCR holds, then fitting a least squares
model to Z1, . . . , ZM will lead to better results than fitting a least squares
model to X1, . . . , Xp, since most or all of the information in the data that
relates to the response is contained in Z1, . . . , ZM , and by estimating only
M * p coefficients we can mitigate overfitting. In the advertising data, the
first principal component explains most of the variance in both pop and ad,
so a principal component regression that uses this single variable to predict
some response of interest, such as sales, will likely perform quite well.

Figure 6.18 displays the PCR fits on the simulated data sets from Fig-
ures 6.8 and 6.9. Recall that both data sets were generated using n = 50
observations and p = 45 predictors. However, while the response in the
first data set was a function of all the predictors, the response in the sec-
ond data set was generated using only two of the predictors. The curves are
plotted as a function of M , the number of principal components used as
predictors in the regression model. As more principal components are used
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FIGURE 6.19. PCR, ridge regression, and the lasso were applied to a simu-
lated data set in which the first five principal components of X contain all the
information about the response Y . In each panel, the irreducible error Var(ε) is
shown as a horizontal dashed line. Left: Results for PCR. Right: Results for lasso
(solid) and ridge regression (dotted). The x-axis displays the shrinkage factor
of the coefficient estimates, defined as the $2 norm of the shrunken coefficient
estimates divided by the $2 norm of the least squares estimate.

in the regression model, the bias decreases, but the variance increases. This
results in a typical U-shape for the mean squared error. When M = p = 45,
then PCR amounts simply to a least squares fit using all of the original
predictors. The figure indicates that performing PCR with an appropriate
choice of M can result in a substantial improvement over least squares, es-
pecially in the left-hand panel. However, by examining the ridge regression
and lasso results in Figures 6.5, 6.8, and 6.9, we see that PCR does not
perform as well as the two shrinkage methods in this example.

The relatively worse performance of PCR in Figure 6.18 is a consequence
of the fact that the data were generated in such a way that many princi-
pal components are required in order to adequately model the response.
In contrast, PCR will tend to do well in cases when the first few principal
components are sufficient to capture most of the variation in the predictors
as well as the relationship with the response. The left-hand panel of Fig-
ure 6.19 illustrates the results from another simulated data set designed to
be more favorable to PCR. Here the response was generated in such a way
that it depends exclusively on the first five principal components. Now the
bias drops to zero rapidly as M , the number of principal components used
in PCR, increases. The mean squared error displays a clear minimum at
M = 5. The right-hand panel of Figure 6.19 displays the results on these
data using ridge regression and the lasso. All three methods offer a signif-
icant improvement over least squares. However, PCR and ridge regression
slightly outperform the lasso.

We note that even though PCR provides a simple way to perform re-
gression using M < p predictors, it is not a feature selection method. This
is because each of the M principal components used in the regression is a
linear combination of all p of the original features. For instance, in (6.19),
Z1 was a linear combination of both pop and ad. Therefore, while PCR of-
ten performs quite well in many practical settings, it does not result in the
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FIGURE 6.20. Left: PCR standardized coefficient estimates on the Credit data
set for different values of M . Right: The ten-fold cross-validation MSE obtained
using PCR, as a function of M .

development of a model that relies upon a small set of the original features.
In this sense, PCR is more closely related to ridge regression than to the
lasso. In fact, one can show that PCR and ridge regression are very closely
related. One can even think of ridge regression as a continuous version of
PCR!8

In PCR, the number of principal components, M , is typically chosen by
cross-validation. The results of applying PCR to the Credit data set are
shown in Figure 6.20; the right-hand panel displays the cross-validation er-
rors obtained, as a function of M . On these data, the lowest cross-validation
error occurs when there are M = 10 components; this corresponds to al-
most no dimension reduction at all, since PCR with M = 11 is equivalent
to simply performing least squares.

When performing PCR, we generally recommend standardizing each pre-
dictor, using (6.6), prior to generating the principal components. This stan-
dardization ensures that all variables are on the same scale. In the absence
of standardization, the high-variance variables will tend to play a larger
role in the principal components obtained, and the scale on which the vari-
ables are measured will ultimately have an effect on the final PCR model.
However, if the variables are all measured in the same units (say, kilograms,
or inches), then one might choose not to standardize them.

6.3.2 Partial Least Squares
The PCR approach that we just described involves identifying linear combi-
nations, or directions, that best represent the predictors X1, . . . , Xp. These
directions are identified in an unsupervised way, since the response Y is
not used to help determine the principal component directions. That is,
the response does not supervise the identification of the principal compo-
nents. Consequently, PCR suffers from a drawback: there is no guarantee

8More details can be found in Section 3.5 of The Elements of Statistical Learning by
Hastie, Tibshirani, and Friedman.
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FIGURE 6.21. For the advertising data, the first PLS direction (solid line)
and first PCR direction (dotted line) are shown.

that the directions that best explain the predictors will also be the best
directions to use for predicting the response. Unsupervised methods are
discussed further in Chapter 12.

We now present partial least squares (PLS), a supervised alternative to partial least
squaresPCR. Like PCR, PLS is a dimension reduction method, which first identifies

a new set of features Z1, . . . , ZM that are linear combinations of the original
features, and then fits a linear model via least squares using these M new
features. But unlike PCR, PLS identifies these new features in a supervised
way—that is, it makes use of the response Y in order to identify new
features that not only approximate the old features well, but also that are
related to the response. Roughly speaking, the PLS approach attempts to
find directions that help explain both the response and the predictors.

We now describe how the first PLS direction is computed. After stan-
dardizing the p predictors, PLS computes the first direction Z1 by setting
each φj1 in (6.16) equal to the coefficient from the simple linear regression
of Y onto Xj . One can show that this coefficient is proportional to the cor-
relation between Y and Xj . Hence, in computing Z1 =

∑p
j=1 φj1Xj , PLS

places the highest weight on the variables that are most strongly related to
the response.

Figure 6.21 displays an example of PLS on a synthetic dataset with Sales
in each of 100 regions as the response, and two predictors; Population Size
and Advertising Spending. The solid green line indicates the first PLS di-
rection, while the dotted line shows the first principal component direction.
PLS has chosen a direction that has less change in the ad dimension per
unit change in the pop dimension, relative to PCA. This suggests that pop
is more highly correlated with the response than is ad. The PLS direction
does not fit the predictors as closely as does PCA, but it does a better job
explaining the response.

To identify the second PLS direction we first adjust each of the variables
for Z1, by regressing each variable on Z1 and taking residuals. These resid-
uals can be interpreted as the remaining information that has not been
explained by the first PLS direction. We then compute Z2 using this or-
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thogonalized data in exactly the same fashion as Z1 was computed based
on the original data. This iterative approach can be repeated M times to
identify multiple PLS components Z1, . . . , ZM . Finally, at the end of this
procedure, we use least squares to fit a linear model to predict Y using
Z1, . . . , ZM in exactly the same fashion as for PCR.

As with PCR, the number M of partial least squares directions used in
PLS is a tuning parameter that is typically chosen by cross-validation. We
generally standardize the predictors and response before performing PLS.

PLS is popular in the field of chemometrics, where many variables arise
from digitized spectrometry signals. In practice it often performs no better
than ridge regression or PCR. While the supervised dimension reduction
of PLS can reduce bias, it also has the potential to increase variance, so
that the overall benefit of PLS relative to PCR is a wash.

6.4 Considerations in High Dimensions
6.4.1 High-Dimensional Data
Most traditional statistical techniques for regression and classification are
intended for the low-dimensional setting in which n, the number of ob- low-

dimensionalservations, is much greater than p, the number of features. This is due in
part to the fact that throughout most of the field’s history, the bulk of sci-
entific problems requiring the use of statistics have been low-dimensional.
For instance, consider the task of developing a model to predict a patient’s
blood pressure on the basis of his or her age, sex, and body mass index
(BMI). There are three predictors, or four if an intercept is included in the
model, and perhaps several thousand patients for whom blood pressure
and age, sex, and BMI are available. Hence n ! p, and so the problem is
low-dimensional. (By dimension here we are referring to the size of p.)

In the past 20 years, new technologies have changed the way that data
are collected in fields as diverse as finance, marketing, and medicine. It is
now commonplace to collect an almost unlimited number of feature mea-
surements (p very large). While p can be extremely large, the number of
observations n is often limited due to cost, sample availability, or other
considerations. Two examples are as follows:

1. Rather than predicting blood pressure on the basis of just age, sex,
and BMI, one might also collect measurements for half a million sin-
gle nucleotide polymorphisms (SNPs; these are individual DNA mu-
tations that are relatively common in the population) for inclusion in
the predictive model. Then n ≈ 200 and p ≈ 500,000.

2. A marketing analyst interested in understanding people’s online shop-
ping patterns could treat as features all of the search terms entered
by users of a search engine. This is sometimes known as the “bag-of-
words” model. The same researcher might have access to the search
histories of only a few hundred or a few thousand search engine users
who have consented to share their information with the researcher.
For a given user, each of the p search terms is scored present (0) or
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absent (1), creating a large binary feature vector. Then n ≈ 1,000
and p is much larger.

Data sets containing more features than observations are often referred
to as high-dimensional. Classical approaches such as least squares linear high-

dimensionalregression are not appropriate in this setting. Many of the issues that arise
in the analysis of high-dimensional data were discussed earlier in this book,
since they apply also when n > p: these include the role of the bias-variance
trade-off and the danger of overfitting. Though these issues are always rele-
vant, they can become particularly important when the number of features
is very large relative to the number of observations.

We have defined the high-dimensional setting as the case where the num-
ber of features p is larger than the number of observations n. But the con-
siderations that we will now discuss certainly also apply if p is slightly
smaller than n, and are best always kept in mind when performing super-
vised learning.

6.4.2 What Goes Wrong in High Dimensions?
In order to illustrate the need for extra care and specialized techniques
for regression and classification when p > n, we begin by examining what
can go wrong if we apply a statistical technique not intended for the high-
dimensional setting. For this purpose, we examine least squares regression.
But the same concepts apply to logistic regression, linear discriminant anal-
ysis, and other classical statistical approaches.

When the number of features p is as large as, or larger than, the number
of observations n, least squares as described in Chapter 3 cannot (or rather,
should not) be performed. The reason is simple: regardless of whether or
not there truly is a relationship between the features and the response,
least squares will yield a set of coefficient estimates that result in a perfect
fit to the data, such that the residuals are zero.

An example is shown in Figure 6.22 with p = 1 feature (plus an intercept)
in two cases: when there are 20 observations, and when there are only
two observations. When there are 20 observations, n > p and the least
squares regression line does not perfectly fit the data; instead, the regression
line seeks to approximate the 20 observations as well as possible. On the
other hand, when there are only two observations, then regardless of the
values of those observations, the regression line will fit the data exactly.
This is problematic because this perfect fit will almost certainly lead to
overfitting of the data. In other words, though it is possible to perfectly fit
the training data in the high-dimensional setting, the resulting linear model
will perform extremely poorly on an independent test set, and therefore
does not constitute a useful model. In fact, we can see that this happened
in Figure 6.22: the least squares line obtained in the right-hand panel will
perform very poorly on a test set comprised of the observations in the left-
hand panel. The problem is simple: when p > n or p ≈ n, a simple least
squares regression line is too flexible and hence overfits the data.

Figure 6.23 further illustrates the risk of carelessly applying least squares
when the number of features p is large. Data were simulated with n = 20
observations, and regression was performed with between 1 and 20 features,
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FIGURE 6.22. Left: Least squares regression in the low-dimensional setting.
Right: Least squares regression with n = 2 observations and two parameters to be
estimated (an intercept and a coefficient).
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FIGURE 6.23. On a simulated example with n = 20 training observations,
features that are completely unrelated to the outcome are added to the model.
Left: The R2 increases to 1 as more features are included. Center: The training
set MSE decreases to 0 as more features are included. Right: The test set MSE
increases as more features are included.

each of which was completely unrelated to the response. As shown in the
figure, the model R2 increases to 1 as the number of features included in the
model increases, and correspondingly the training set MSE decreases to 0
as the number of features increases, even though the features are completely
unrelated to the response. On the other hand, the MSE on an independent
test set becomes extremely large as the number of features included in the
model increases, because including the additional predictors leads to a vast
increase in the variance of the coefficient estimates. Looking at the test
set MSE, it is clear that the best model contains at most a few variables.
However, someone who carelessly examines only the R2 or the training set
MSE might erroneously conclude that the model with the greatest number
of variables is best. This indicates the importance of applying extra care
when analyzing data sets with a large number of variables, and of always
evaluating model performance on an independent test set.
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FIGURE 6.24. The lasso was performed with n = 100 observations and three
values of p, the number of features. Of the p features, 20 were associated with
the response. The boxplots show the test MSEs that result using three different
values of the tuning parameter λ in (6.7). For ease of interpretation, rather than
reporting λ, the degrees of freedom are reported; for the lasso this turns out
to be simply the number of estimated non-zero coefficients. When p = 20, the
lowest test MSE was obtained with the smallest amount of regularization. When
p = 50, the lowest test MSE was achieved when there is a substantial amount
of regularization. When p = 2,000 the lasso performed poorly regardless of the
amount of regularization, due to the fact that only 20 of the 2,000 features truly
are associated with the outcome.

In Section 6.1.3, we saw a number of approaches for adjusting the training
set RSS or R2 in order to account for the number of variables used to fit
a least squares model. Unfortunately, the Cp, AIC, and BIC approaches
are not appropriate in the high-dimensional setting, because estimating σ̂2

is problematic. (For instance, the formula for σ̂2 from Chapter 3 yields an
estimate σ̂2 = 0 in this setting.) Similarly, problems arise in the application
of adjusted R2 in the high-dimensional setting, since one can easily obtain
a model with an adjusted R2 value of 1. Clearly, alternative approaches
that are better-suited to the high-dimensional setting are required.

6.4.3 Regression in High Dimensions
It turns out that many of the methods seen in this chapter for fitting
less flexible least squares models, such as forward stepwise selection, ridge
regression, the lasso, and principal components regression, are particularly
useful for performing regression in the high-dimensional setting. Essentially,
these approaches avoid overfitting by using a less flexible fitting approach
than least squares.

Figure 6.24 illustrates the performance of the lasso in a simple simulated
example. There are p = 20, 50, or 2,000 features, of which 20 are truly
associated with the outcome. The lasso was performed on n = 100 training
observations, and the mean squared error was evaluated on an independent
test set. As the number of features increases, the test set error increases.
When p = 20, the lowest validation set error was achieved when λ in
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(6.7) was small; however, when p was larger then the lowest validation
set error was achieved using a larger value of λ. In each boxplot, rather
than reporting the values of λ used, the degrees of freedom of the resulting
lasso solution is displayed; this is simply the number of non-zero coefficient
estimates in the lasso solution, and is a measure of the flexibility of the
lasso fit. Figure 6.24 highlights three important points: (1) regularization
or shrinkage plays a key role in high-dimensional problems, (2) appropriate
tuning parameter selection is crucial for good predictive performance, and
(3) the test error tends to increase as the dimensionality of the problem
(i.e. the number of features or predictors) increases, unless the additional
features are truly associated with the response.

The third point above is in fact a key principle in the analysis of high-
dimensional data, which is known as the curse of dimensionality. One might curse of di-

mensionalitythink that as the number of features used to fit a model increases, the
quality of the fitted model will increase as well. However, comparing the
left-hand and right-hand panels in Figure 6.24, we see that this is not
necessarily the case: in this example, the test set MSE almost doubles as
p increases from 20 to 2,000. In general, adding additional signal features
that are truly associated with the response will improve the fitted model,
in the sense of leading to a reduction in test set error. However, adding
noise features that are not truly associated with the response will lead
to a deterioration in the fitted model, and consequently an increased test
set error. This is because noise features increase the dimensionality of the
problem, exacerbating the risk of overfitting (since noise features may be
assigned nonzero coefficients due to chance associations with the response
on the training set) without any potential upside in terms of improved test
set error. Thus, we see that new technologies that allow for the collection
of measurements for thousands or millions of features are a double-edged
sword: they can lead to improved predictive models if these features are in
fact relevant to the problem at hand, but will lead to worse results if the
features are not relevant. Even if they are relevant, the variance incurred
in fitting their coefficients may outweigh the reduction in bias that they
bring.

6.4.4 Interpreting Results in High Dimensions
When we perform the lasso, ridge regression, or other regression proce-
dures in the high-dimensional setting, we must be quite cautious in the way
that we report the results obtained. In Chapter 3, we learned about multi-
collinearity, the concept that the variables in a regression might be corre-
lated with each other. In the high-dimensional setting, the multicollinearity
problem is extreme: any variable in the model can be written as a linear
combination of all of the other variables in the model. Essentially, this
means that we can never know exactly which variables (if any) truly are
predictive of the outcome, and we can never identify the best coefficients
for use in the regression. At most, we can hope to assign large regression
coefficients to variables that are correlated with the variables that truly are
predictive of the outcome.
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For instance, suppose that we are trying to predict blood pressure on the
basis of half a million SNPs, and that forward stepwise selection indicates
that 17 of those SNPs lead to a good predictive model on the training data.
It would be incorrect to conclude that these 17 SNPs predict blood pressure
more effectively than the other SNPs not included in the model. There are
likely to be many sets of 17 SNPs that would predict blood pressure just
as well as the selected model. If we were to obtain an independent data set
and perform forward stepwise selection on that data set, we would likely
obtain a model containing a different, and perhaps even non-overlapping,
set of SNPs. This does not detract from the value of the model obtained—
for instance, the model might turn out to be very effective in predicting
blood pressure on an independent set of patients, and might be clinically
useful for physicians. But we must be careful not to overstate the results
obtained, and to make it clear that what we have identified is simply one
of many possible models for predicting blood pressure, and that it must be
further validated on independent data sets.

It is also important to be particularly careful in reporting errors and mea-
sures of model fit in the high-dimensional setting. We have seen that when
p > n, it is easy to obtain a useless model that has zero residuals. There-
fore, one should never use sum of squared errors, p-values, R2 statistics, or
other traditional measures of model fit on the training data as evidence of
a good model fit in the high-dimensional setting. For instance, as we saw
in Figure 6.23, one can easily obtain a model with R2 = 1 when p > n.
Reporting this fact might mislead others into thinking that a statistically
valid and useful model has been obtained, whereas in fact this provides
absolutely no evidence of a compelling model. It is important to instead
report results on an independent test set, or cross-validation errors. For
instance, the MSE or R2 on an independent test set is a valid measure of
model fit, but the MSE on the training set certainly is not.

6.5 Lab: Linear Models and Regularization
Methods

In this lab we implement many of the techniques discussed in this chapter.
We import some of our libraries at this top level.

In [1]: import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
from statsmodels.api import OLS
import sklearn.model_selection as skm
import sklearn.linear_model as skl
from sklearn.preprocessing import StandardScaler
from ISLP import load_data
from ISLP.models import ModelSpec as MS
from functools import partial

We again collect the new imports needed for this lab.
In [2]: from sklearn.pipeline import Pipeline

from sklearn.decomposition import PCA
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