®

Check for
updates

5!
Resampling Methods

Resampling methods are an indispensable tool in modern statistics. They
involve repeatedly drawing samples from a training set and refitting a model
of interest on each sample in order to obtain additional information about
the fitted model. For example, in order to estimate the variability of a linear
regression fit, we can repeatedly draw different samples from the training
data, fit a linear regression to each new sample, and then examine the
extent to which the resulting fits differ. Such an approach may allow us to
obtain information that would not be available from fitting the model only
once using the original training sample.

Resampling approaches can be computationally expensive, because they
involve fitting the same statistical method multiple times using different
subsets of the training data. However, due to recent advances in computing
power, the computational requirements of resampling methods generally
are not prohibitive. In this chapter, we discuss two of the most commonly
used resampling methods, cross-validation and the bootstrap. Both methods
are important tools in the practical application of many statistical learning
procedures. For example, cross-validation can be used to estimate the test
error associated with a given statistical learning method in order to evaluate
its performance, or to select the appropriate level of flexibility. The process
of evaluating a model’s performance is known as model assessment, whereas
the process of selecting the proper level of flexibility for a model is known as
model selection. The bootstrap is used in several contexts, most commonly
to provide a measure of accuracy of a parameter estimate or of a given
statistical learning method.

© Springer Nature Switzerland AG 2023 201
G. James et al., An Introduction to Statistical Learning, Springer Texts in Statistics,
https://doi.org/10.1007/978-3-031-38747-0 5

model
assessment

model
selection

https://doi.org/10.1007/978-3-031-38747-0_5
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-38747-0_5&domain=pdf

202 5. Resampling Methods

5.1 Cross-Validation

In Chapter 2 we discuss the distinction between the test error rate and the
training error rate. The test error is the average error that results from using
a statistical learning method to predict the response on a new observation—
that is, a measurement that was not used in training the method. Given
a data set, the use of a particular statistical learning method is warranted
if it results in a low test error. The test error can be easily calculated if a
designated test set is available. Unfortunately, this is usually not the case.
In contrast, the training error can be easily calculated by applying the
statistical learning method to the observations used in its training. But as
we saw in Chapter 2, the training error rate often is quite different from the
test error rate, and in particular the former can dramatically underestimate
the latter.

In the absence of a very large designated test set that can be used to
directly estimate the test error rate, a number of techniques can be used
to estimate this quantity using the available training data. Some methods
make a mathematical adjustment to the training error rate in order to
estimate the test error rate. Such approaches are discussed in Chapter 6.
In this section, we instead consider a class of methods that estimate the
test error rate by holding out a subset of the training observations from the
fitting process, and then applying the statistical learning method to those
held out observations.

In Sections 5.1.1-5.1.4, for simplicity we assume that we are interested
in performing regression with a quantitative response. In Section 5.1.5 we
consider the case of classification with a qualitative response. As we will
see, the key concepts remain the same regardless of whether the response
is quantitative or qualitative.

5.1.1 The Validation Set Approach

Suppose that we would like to estimate the test error associated with fit-
ting a particular statistical learning method on a set of observations. The
validation set approach, displayed in Figure 5.1, is a very simple strategy
for this task. It involves randomly dividing the available set of observa-
tions into two parts, a training set and a validation set or hold-out set. The
model is fit on the training set, and the fitted model is used to predict the
responses for the observations in the validation set. The resulting validation
set error rate—typically assessed using MSE in the case of a quantitative
response—provides an estimate of the test error rate.

We illustrate the validation set approach on the Auto data set. Recall from
Chapter 3 that there appears to be a non-linear relationship between mpg
and horsepower, and that a model that predicts mpg using horsepower and
horsepower” gives better results than a model that uses only a linear term.
It is natural to wonder whether a cubic or higher-order fit might provide
even better results. We answer this question in Chapter 3 by looking at
the p-values associated with a cubic term and higher-order polynomial
terms in a linear regression. But we could also answer this question using
the validation method. We randomly split the 392 observations into two

validation
set approach
validation
set

hold-out set

5.1 Cross-Validation 203

123 n

!

7 22 13 91

FIGURE 5.1. A schematic display of the validation set approach. A set of n
observations are randomly split into a training set (shown in blue, containing
observations 7, 22, and 18, among others) and a validation set (shown in beige,
and containing observation 91, among others). The statistical learning method is
fit on the training set, and its performance is evaluated on the validation set.

sets, a training set containing 196 of the data points, and a validation set
containing the remaining 196 observations. The validation set error rates
that result from fitting various regression models on the training sample
and evaluating their performance on the validation sample, using MSE
as a measure of validation set error, are shown in the left-hand panel of
Figure 5.2. The validation set MSE for the quadratic fit is considerably
smaller than for the linear fit. However, the validation set MSE for the cubic
fit is actually slightly larger than for the quadratic fit. This implies that
including a cubic term in the regression does not lead to better prediction
than simply using a quadratic term.

Recall that in order to create the left-hand panel of Figure 5.2, we ran-
domly divided the data set into two parts, a training set and a validation
set. If we repeat the process of randomly splitting the sample set into two
parts, we will get a somewhat different estimate for the test MSE. As an
illustration, the right-hand panel of Figure 5.2 displays ten different vali-
dation set MSE curves from the Auto data set, produced using ten different
random splits of the observations into training and validation sets. All ten
curves indicate that the model with a quadratic term has a dramatically
smaller validation set MSE than the model with only a linear term. Fur-
thermore, all ten curves indicate that there is not much benefit in including
cubic or higher-order polynomial terms in the model. But it is worth noting
that each of the ten curves results in a different test MSE estimate for each
of the ten regression models considered. And there is no consensus among
the curves as to which model results in the smallest validation set MSE.
Based on the variability among these curves, all that we can conclude with
any confidence is that the linear fit is not adequate for this data.

The validation set approach is conceptually simple and is easy to imple-
ment. But it has two potential drawbacks:

1. As is shown in the right-hand panel of Figure 5.2, the validation esti-
mate of the test error rate can be highly variable, depending on pre-
cisely which observations are included in the training set and which
observations are included in the validation set.

2. In the validation approach, only a subset of the observations—those
that are included in the training set rather than in the validation
set—are used to fit the model. Since statistical methods tend to per-
form worse when trained on fewer observations, this suggests that the

204 5. Resampling Methods

Mean Squared Error
16 18 20 22 24 26 28
| |
o
L[]
L]
Mean Squared Error
16 18 20 22 24 26 28
| | |
N

—
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Degree of Polynomial Degree of Polynomial

FIGURE 5.2. The validation set approach was used on the Auto data set in
order to estimate the test error that results from predicting mpg using polynomial
functions of horsepower. Left: Validation error estimates for a single split into
training and validation data sets. Right: The validation method was repeated ten
times, each time using a different random split of the observations into a training
set and a validation set. This illustrates the variability in the estimated test MSE
that results from this approach.

validation set error rate may tend to overestimate the test error rate
for the model fit on the entire data set.

In the coming subsections, we will present cross-validation, a refinement of
the validation set approach that addresses these two issues.

5.1.2 Leave-One-Out Cross-Validation

Leave-one-out cross-validation (LOOCV) is closely related to the validation
set approach of Section 5.1.1, but it attempts to address that method’s
drawbacks.

Like the validation set approach, LOOCYV involves splitting the set of
observations into two parts. However, instead of creating two subsets of
comparable size, a single observation (z1,y;) is used for the validation
set, and the remaining observations {(z2,¥2),..., (Zn,yn)} make up the
training set. The statistical learning method is fit on the n — 1 training
observations, and a prediction ¢; is made for the excluded observation,
using its value x;. Since (21, y1) was not used in the fitting process, MSE; =
(y1 — 91)? provides an approximately unbiased estimate for the test error.
But even though MSE; is unbiased for the test error, it is a poor estimate
because it is highly variable, since it is based upon a single observation
(z1,91)-

We can repeat the procedure by selecting (x2,y2) for the validation
data, training the statistical learning procedure on the n — 1 observations
{(z1,91), (23,93), - -, (Tn,yn)}, and computing MSE; = (y2—92)*. Repeat-
ing this approach n times produces n squared errors, MSE,, ..., MSE,,.
The LOOCYV estimate for the test MSE is the average of these n test error
estimates:

1 n
CVmy =~ > MSE;. (5.1)
i=1

leave-one-
out

cross-
validation

5.1 Cross-Validation 205

123 n |
1P n
123 n
123 n
123 n

FIGURE 5.3. A schematic display of LOOCYV. A set of n data points is repeat-
edly split into a training set (shown in blue) containing all but one observation,
and a validation set that contains only that observation (shown in beige). The test
error is then estimated by averaging the n resulting MSEs. The first training set
contains all but observation 1, the second training set contains all but observation
2, and so forth.

A schematic of the LOOCYV approach is illustrated in Figure 5.3.

LOOCV has a couple of major advantages over the validation set ap-
proach. First, it has far less bias. In LOOCYV, we repeatedly fit the sta-
tistical learning method using training sets that contain n — 1 observa-
tions, almost as many as are in the entire data set. This is in contrast to
the validation set approach, in which the training set is typically around
half the size of the original data set. Consequently, the LOOCV approach
tends not to overestimate the test error rate as much as the validation
set approach does. Second, in contrast to the validation approach which
will yield different results when applied repeatedly due to randomness in
the training/validation set splits, performing LOOCYV multiple times will
always yield the same results: there is no randomness in the training/vali-
dation set splits.

We used LOOCYV on the Auto data set in order to obtain an estimate
of the test set MSE that results from fitting a linear regression model to
predict mpg using polynomial functions of horsepower. The results are shown
in the left-hand panel of Figure 5.4.

LOOCYV has the potential to be expensive to implement, since the model
has to be fit n times. This can be very time consuming if n is large, and if
each individual model is slow to fit. With least squares linear or polynomial
regression, an amazing shortcut makes the cost of LOOCYV the same as that
of a single model fit! The following formula holds:

L (=)
CV("):nZ(l—hi) : (5.2)

206 5. Resampling Methods

LOOCV 10-fold CV

© _| © _|

& &
o .
2 &~ S g
] fim}
- I - S 4
9] 9]
e 9
O o T o
3 N 3 o~
@ \ @A /

o o \
s & e e e—0o—0o—"° S & —_— —
2 o | 2 o |
= - = -

e+ €

T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Degree of Polynomial Degree of Polynomial

FIGURE 5.4. Cross-validation was used on the Auto data set in order to
estimate the test error that results from predicting mpg using polynomial functions
of horsepower. Left: The LOOCYV error curve. Right: 10-fold CV was run nine
separate times, each with a different random split of the data into ten parts. The
figure shows the nine slightly different CV error curves.

where g; is the ith fitted value from the original least squares fit, and h; is
the leverage defined in (3.37) on page 105.! This is like the ordinary MSE,
except the ith residual is divided by 1 — h;. The leverage lies between 1/n
and 1, and reflects the amount that an observation influences its own fit.
Hence the residuals for high-leverage points are inflated in this formula by
exactly the right amount for this equality to hold.

LOOCV is a very general method, and can be used with any kind of
predictive modeling. For example we could use it with logistic regression
or linear discriminant analysis, or any of the methods discussed in later
chapters. The magic formula (5.2) does not hold in general, in which case
the model has to be refit n times.

5.1.3 k-Fold Cross-Validation

An alternative to LOOCYV is k-fold C'V. This approach involves randomly
dividing the set of observations into k groups, or folds, of approximately
equal size. The first fold is treated as a validation set, and the method
is fit on the remaining & — 1 folds. The mean squared error, MSE;, is
then computed on the observations in the held-out fold. This procedure is
repeated k times; each time, a different group of observations is treated
as a validation set. This process results in k estimates of the test error,
MSE;, MSEq,, ..., MSEy. The k-fold CV estimate is computed by averaging
these values,

k
1
C == MSE;. 5.3
Vik) 5 ; (5.3)
Figure 5.5 illustrates the k-fold CV approach.

n the case of multiple linear regression, the leverage takes a slightly more compli-
cated form than (3.37), but (5.2) still holds.

k-fold CV

5.1 Cross-Validation 207

123 n
!

11765 47

11765 47

11765 47

11765 47

11765 47

FIGURE 5.5. A schematic display of 5-fold CV. A set of n observations is
randomly split into five non-overlapping groups. Each of these fifths acts as a
validation set (shown in beige), and the remainder as a training set (shown in
blue). The test error is estimated by averaging the five resulting MSE estimates.

It is not hard to see that LOOCYV is a special case of k-fold CV in which &
is set to equal n. In practice, one typically performs k-fold CV using k =5
or k = 10. What is the advantage of using £ = 5 or k = 10 rather than
k = n? The most obvious advantage is computational. LOOCV requires
fitting the statistical learning method n times. This has the potential to be
computationally expensive (except for linear models fit by least squares,
in which case formula (5.2) can be used). But cross-validation is a very
general approach that can be applied to almost any statistical learning
method. Some statistical learning methods have computationally intensive
fitting procedures, and so performing LOOCV may pose computational
problems, especially if n is extremely large. In contrast, performing 10-fold
CV requires fitting the learning procedure only ten times, which may be
much more feasible. As we see in Section 5.1.4, there also can be other
non-computational advantages to performing 5-fold or 10-fold CV, which
involve the bias-variance trade-off.

The right-hand panel of Figure 5.4 displays nine different 10-fold CV
estimates for the Auto data set, each resulting from a different random split
of the observations into ten folds. As we can see from the figure, there is
some variability in the CV estimates as a result of the variability in how
the observations are divided into ten folds. But this variability is typically
much lower than the variability in the test error estimates that results from
the validation set approach (right-hand panel of Figure 5.2).

When we examine real data, we do not know the true test MSE, and
so it is difficult to determine the accuracy of the cross-validation estimate.
However, if we examine simulated data, then we can compute the true
test MSE, and can thereby evaluate the accuracy of our cross-validation
results. In Figure 5.6, we plot the cross-validation estimates and true test
error rates that result from applying smoothing splines to the simulated
data sets illustrated in Figures 2.9-2.11 of Chapter 2. The true test MSE
is displayed in blue. The black dashed and orange solid lines respectively
show the estimated LOOCV and 10-fold CV estimates. In all three plots,
the two cross-validation estimates are very similar. In the right-hand panel

208 5. Resampling Methods

Mean Squared Error
1

Mean Squared Error
1

Mean Squared Error

Flexibility Flexibility Flexibility

FIGURE 5.6. True and estimated test MSE for the simulated data sets in
Figures 2.9 (left), 2.10 (center), and 2.11 (right). The true test MSE is shown
in blue, the LOOCYV estimate is shown as a black dashed line, and the 10-fold
CV estimate is shown in orange. The crosses indicate the minimum of each of
the MSE curves.

of Figure 5.6, the true test MSE and the cross-validation curves are almost
identical. In the center panel of Figure 5.6, the two sets of curves are similar
at the lower degrees of flexibility, while the CV curves overestimate the test
set MSE for higher degrees of flexibility. In the left-hand panel of Figure 5.6,
the CV curves have the correct general shape, but they underestimate the
true test MSE.

When we perform cross-validation, our goal might be to determine how
well a given statistical learning procedure can be expected to perform on
independent data; in this case, the actual estimate of the test MSE is
of interest. But at other times we are interested only in the location of
the minimum point in the estimated test MSE curve. This is because we
might be performing cross-validation on a number of statistical learning
methods, or on a single method using different levels of flexibility, in order
to identify the method that results in the lowest test error. For this purpose,
the location of the minimum point in the estimated test MSE curve is
important, but the actual value of the estimated test MSE is not. We find
in Figure 5.6 that despite the fact that they sometimes underestimate the
true test MSE, all of the CV curves come close to identifying the correct
level of flexibility—that is, the flexibility level corresponding to the smallest
test MSE.

5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation

We mentioned in Section 5.1.3 that k-fold CV with & < n has a compu-
tational advantage to LOOCYV. But putting computational issues aside,
a less obvious but potentially more important advantage of k-fold CV is
that it often gives more accurate estimates of the test error rate than does
LOOCV. This has to do with a bias-variance trade-off.

It was mentioned in Section 5.1.1 that the validation set approach can
lead to overestimates of the test error rate, since in this approach the
training set used to fit the statistical learning method contains only half
the observations of the entire data set. Using this logic, it is not hard to see

5.1 Cross-Validation 209

that LOOCYV will give approximately unbiased estimates of the test error,
since each training set contains n —1 observations, which is almost as many
as the number of observations in the full data set. And performing k-fold
CV for, say, k = 5 or k = 10 will lead to an intermediate level of bias,
since each training set contains approximately (k — 1)n/k observations—
fewer than in the LOOCYV approach, but substantially more than in the
validation set approach. Therefore, from the perspective of bias reduction,
it is clear that LOOCYV is to be preferred to k-fold CV.

However, we know that bias is not the only source for concern in an esti-
mating procedure; we must also consider the procedure’s variance. It turns
out that LOOCYV has higher variance than does k-fold CV with k < n. Why
is this the case? When we perform LOOCV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an almost identical
set of observations; therefore, these outputs are highly (positively) corre-
lated with each other. In contrast, when we perform k-fold CV with k& < n,
we are averaging the outputs of k fitted models that are somewhat less
correlated with each other, since the overlap between the training sets in
each model is smaller. Since the mean of many highly correlated quantities
has higher variance than does the mean of many quantities that are not
as highly correlated, the test error estimate resulting from LOOCYV tends
to have higher variance than does the test error estimate resulting from
k-fold CV.

To summarize, there is a bias-variance trade-off associated with the
choice of k in k-fold cross-validation. Typically, given these considerations,
one performs k-fold cross-validation using k = 5 or k = 10, as these values
have been shown empirically to yield test error rate estimates that suffer
neither from excessively high bias nor from very high variance.

=4

5.1.5 Cross-Validation on Classification Problems

In this chapter so far, we have illustrated the use of cross-validation in the
regression setting where the outcome Y is quantitative, and so have used
MSE to quantify test error. But cross-validation can also be a very useful
approach in the classification setting when Y is qualitative. In this setting,
cross-validation works just as described earlier in this chapter, except that
rather than using MSE to quantify test error, we instead use the number
of misclassified observations. For instance, in the classification setting, the
LOOCYV error rate takes the form

1 n
CV(n) = - E Err;, (5.4)
=1

where Err; = I(y; # ¢;). The k-fold CV error rate and validation set error
rates are defined analogously.

As an example, we fit various logistic regression models on the two-
dimensional classification data displayed in Figure 2.13. In the top-left
panel of Figure 5.7, the black solid line shows the estimated decision bound-
ary resulting from fitting a standard logistic regression model to this data
set. Since this is simulated data, we can compute the true test error rate,
which takes a value of 0.201 and so is substantially larger than the Bayes

210 5. Resampling Methods

Degree=1

Degree=3 Degree=4

FIGURE 5.7. Logistic regression fits on the two-dimensional classification data
displayed in Figure 2.13. The Bayes decision boundary is represented using a
purple dashed line. Estimated decision boundaries from linear, quadratic, cubic
and quartic (degrees 1-4) logistic regressions are displayed in black. The test error
rates for the four logistic regression fits are respectively 0.201, 0.197, 0.160, and
0.162, while the Bayes error rate is 0.133.

error rate of 0.133. Clearly logistic regression does not have enough flexi-
bility to model the Bayes decision boundary in this setting. We can easily
extend logistic regression to obtain a non-linear decision boundary by using
polynomial functions of the predictors, as we did in the regression setting in
Section 3.3.2. For example, we can fit a quadratic logistic regression model,
given by

log <%)> = Bo + B1X1 + B2 X7 + B3 Xo + uX3. (5.5)
The top-right panel of Figure 5.7 displays the resulting decision boundary,
which is now curved. However, the test error rate has improved only slightly,
to 0.197. A much larger improvement is apparent in the bottom-left panel

5.1 Cross-Validation 211

o o
N N
o o
2 2
o oS | o oS |
2 2
M ©
X o X o
5 © | 5 ° |
S S
w oy | wox |
o o
8 8
o 7 o 7
T T T T T T T T T T T T
2 4 6 8 10 001 0.02 005 0410 0.20 050 1.00
Order of Polynomials Used 1/K

FIGURE 5.8. Test error (brown), training error (blue), and 10-fold CV error
(black) on the two-dimensional classification data displayed in Figure 5.7. Left:
Logistic regression using polynomial functions of the predictors. The order of
the polynomials used is displayed on the x-axis. Right: The KNN classifier with
different values of K, the number of neighbors used in the KNN classifier.

of Figure 5.7, in which we have fit a logistic regression model involving
cubic polynomials of the predictors. Now the test error rate has decreased
to 0.160. Going to a quartic polynomial (bottom-right) slightly increases
the test error.

In practice, for real data, the Bayes decision boundary and the test er-
ror rates are unknown. So how might we decide between the four logistic
regression models displayed in Figure 5.77 We can use cross-validation in
order to make this decision. The left-hand panel of Figure 5.8 displays in
black the 10-fold CV error rates that result from fitting ten logistic regres-
sion models to the data, using polynomial functions of the predictors up
to tenth order. The true test errors are shown in brown, and the training
errors are shown in blue. As we have seen previously, the training error
tends to decrease as the flexibility of the fit increases. (The figure indicates
that though the training error rate doesn’t quite decrease monotonically,
it tends to decrease on the whole as the model complexity increases.) In
contrast, the test error displays a characteristic U-shape. The 10-fold CV
error rate provides a pretty good approximation to the test error rate.
While it somewhat underestimates the error rate, it reaches a minimum
when fourth-order polynomials are used, which is very close to the min-
imum of the test curve, which occurs when third-order polynomials are
used. In fact, using fourth-order polynomials would likely lead to good test
set performance, as the true test error rate is approximately the same for
third, fourth, fifth, and sixth-order polynomials.

The right-hand panel of Figure 5.8 displays the same three curves us-
ing the KNN approach for classification, as a function of the value of K
(which in this context indicates the number of neighbors used in the KNN
classifier, rather than the number of CV folds used). Again the training
error rate declines as the method becomes more flexible, and so we see that
the training error rate cannot be used to select the optimal value for K.
Though the cross-validation error curve slightly underestimates the test
error rate, it takes on a minimum very close to the best value for K.

212 5. Resampling Methods
5.2 The Bootstrap

The bootstrap is a widely applicable and extremely powerful statistical tool
that can be used to quantify the uncertainty associated with a given esti-
mator or statistical learning method. As a simple example, the bootstrap
can be used to estimate the standard errors of the coefficients from a linear
regression fit. In the specific case of linear regression, this is not particularly
useful, since we saw in Chapter 3 that standard statistical software such as
R outputs such standard errors automatically. However, the power of the
bootstrap lies in the fact that it can be easily applied to a wide range of
statistical learning methods, including some for which a measure of vari-
ability is otherwise difficult to obtain and is not automatically output by
statistical software.

In this section we illustrate the bootstrap on a toy example in which we
wish to determine the best investment allocation under a simple model.
In Section 5.3 we explore the use of the bootstrap to assess the variability
associated with the regression coefficients in a linear model fit.

Suppose that we wish to invest a fixed sum of money in two financial
assets that yield returns of X and Y, respectively, where X and Y are
random quantities. We will invest a fraction « of our money in X, and will
invest the remaining 1 — « in Y. Since there is variability associated with
the returns on these two assets, we wish to choose a to minimize the total
risk, or variance, of our investment. In other words, we want to minimize
Var(aX + (1 — a)Y). One can show that the value that minimizes the risk
is given by

0y —oxy
B crg(+0)2, —20xy

where 0% = Var(X),0% = Var(Y), and oxy = Cov(X,Y).

In reality, the quantities 0%, 0%, and oxy are unknown. We can compute
estimates for these quantities, 63(7 6%, and 6xy, using a data set that
contains past measurements for X and Y. We can then estimate the value
of a that minimizes the variance of our investment using

(5.6)

A2 A
O'Y*O'XY
62 + 62 — 26xy
X Y XY

a = (5.7)
Figure 5.9 illustrates this approach for estimating o on a simulated data
set. In each panel, we simulated 100 pairs of returns for the investments
X and Y. We used these returns to estimate 0%, 0%, and oxy, which we
then substituted into (5.7) in order to obtain estimates for . The value of
& resulting from each simulated data set ranges from 0.532 to 0.657.

It is natural to wish to quantify the accuracy of our estimate of a. To
estimate the standard deviation of &, we repeated the process of simu-
lating 100 paired observations of X and Y, and estimating « using (5.7),
1,000 times. We thereby obtained 1,000 estimates for «, which we can call
&1, Ga, ..., 01 000. The left-hand panel of Figure 5.10 displays a histogram
of the resulting estimates. For these simulations the parameters were set to
0% =1,0% = 1.25, and oxy = 0.5, and so we know that the true value of
a is 0.6. We indicated this value using a solid vertical line on the histogram.

bootstrap

5.2 The Bootstrap 213

.. [[]
~)
o of .00 ° o ° o o‘. ..
- 4) -4 °
o %0 ‘..%: o Qe .}...a.: .
> 7] ’ :'.20:'.... o > od” K0 e o.
- "';. e s0° ° e o ..:..
° ..:o T]le®®e® o o ¢
o~ L) o "o.:'°.
' e e .o . ad e ° o
° °
24 0 1 S04 o 4
X X
. °
o] ¢ L o ‘
%o g ° ::.'
- .'.' :. -1 oo, -’ .:..
._,’k,-.\.;; A Er,
> ° ° ° > °
';oﬁ e . .0?&" o
< ° -~ °® [°
o ° [4 ° ! ...o. ...
5 o f2 e s %e % 02
° [° ®e
o . ® 4 % °
! T T T T T T T T T T T T
-3 -2 -1 0 1 2 -2 -1 0 1 2 3
X X

FIGURE 5.9. Fach panel displays 100 simulated returns for investments
X and Y. From left to right and top to bottom, the resulting estimates for «
are 0.576, 0.532, 0.657, and 0.651.

The mean over all 1,000 estimates for « is

1 1000
= 7000 ; &, = 0.5996,

very close to a = 0.6, and the standard deviation of the estimates is

a

1 1000 A ,
10007_1 Z (Oér — Oé) = 0.083.
r=1
This gives us a very good idea of the accuracy of &: SE(&) = 0.083. So
roughly speaking, for a random sample from the population, we would
expect & to differ from « by approximately 0.08, on average.

In practice, however, the procedure for estimating SE(&) outlined above
cannot be applied, because for real data we cannot generate new samples
from the original population. However, the bootstrap approach allows us
to use a computer to emulate the process of obtaining new sample sets,
so that we can estimate the variability of & without generating additional
samples. Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly sampling
observations from the original data set.

This approach is illustrated in Figure 5.11 on a simple data set, which
we call Z, that contains only n = 3 observations. We randomly select n
observations from the data set in order to produce a bootstrap data set,

214

200

150

5. Resampling Methods

04 05 06 07 08 09

(e}

e}

0.8

0.7

0.6

0.5

03

—
=

+

r T
03 04 O

T
5

T T
06 07 0.

[e3

1
8 09

True

T
Bootstrap

FIGURE 5.10. Left: A histogram of the estimates of o obtained by generating
1,000 simulated data sets from the true population. Center: A histogram of the
estimates of o obtained from 1,000 bootstrap samples from a single data set.
Right: The estimates of o displayed in the left and center panels are shown as
boxplots. In each panel, the pink line indicates the true value of o.

Z*'. The sampling is performed with replacement, which means that the
same observation can occur more than once in the bootstrap data set. In
this example, Z*! contains the third observation twice, the first observation
once, and no instances of the second observation. Note that if an observation
is contained in Z*!, then both its X and Y values are included. We can use
Z*! to produce a new bootstrap estimate for ¢, which we call &*'. This
procedure is repeated B times for some large value of B, in order to produce
B different bootstrap data sets, Z*1, Z*2 ... Z*B_ and B corresponding a
estimates, &*1, &*2,...,&*B. We can compute the standard error of these

art,are, ..
2
&*’”) .

bootstrap estimates using the formula
1 1
B <0‘*’” -3
r=1 r'=1
This serves as an estimate of the standard error of & estimated from the
original data set.

The bootstrap approach is illustrated in the center panel of Figure 5.10,
which displays a histogram of 1,000 bootstrap estimates of «, each com-
puted using a distinct bootstrap data set. This panel was constructed on
the basis of a single data set, and hence could be created using real data.
Note that the histogram looks very similar to the left-hand panel, which
displays the idealized histogram of the estimates of o obtained by generat-
ing 1,000 simulated data sets from the true population. In particular the
bootstrap estimate SE(&) from (5.8) is 0.087, very close to the estimate of
0.083 obtained using 1,000 simulated data sets. The right-hand panel dis-
plays the information in the center and left panels in a different way, via
boxplots of the estimates for a obtained by generating 1,000 simulated data
sets from the true population and using the bootstrap approach. Again, the
boxplots have similar spreads, indicating that the bootstrap approach can
be used to effectively estimate the variability associated with &.

SEg(a) = (5.8)

with
replacement

In[1]:

In[2]:

5.3 Lab: Cross-Validation and the Bootstrap 215

Obs | X Y
3 53 (2.8 %]
(04
1 43 |24
3 53 |28
Obs 1 X Y Obs | X Y
1 43 |24 2 21 |11 A%
. . a
2 2.1 | 1.1 3 >3 123)
3 53 |28 1 .4.3 2.4
t
Original Data (Z) .
Obs [X |Y S
- LA
2 2.1 |1.1
2 2.1 | 1.1
1 43 |24

FIGURE 5.11. A graphical illustration of the bootstrap approach on a small
sample containing n = 3 observations. Fach bootstrap data set contains n obser-
vations, sampled with replacement from the original data set. Each bootstrap data
set is used to obtain an estimate of .

5.3 Lab: Cross-Validation and the Bootstrap

In this lab, we explore the resampling techniques covered in this chap-
ter. Some of the commands in this lab may take a while to run on your
computer.

We again begin by placing most of our imports at this top level.

import numpy as np
import statsmodels.api as sm
from ISLP import load_data
from ISLP.models import (ModelSpec as MS,
summarize,
poly)
from sklearn.model_selection import train_test_split

There are several new imports needed for this lab.

from functools import partial

from sklearn.model_selection import \
(cross_validate,
KFold,
ShuffleSplit)

from sklearn.base import clone

from ISLP.models import sklearn_sm

216 5. Resampling Methods

5.3.1 The Validation Set Approach

We explore the use of the validation set approach in order to estimate the
test error rates that result from fitting various linear models on the Auto
data set.

We use the function train_test_split() to split the data into training
and validation sets. As there are 392 observations, we split into two equal
sets of size 196 using the argument test_size=196. It is generally a good
idea to set a random seed when performing operations like this that contain
an element of randomness, so that the results obtained can be reproduced
precisely at a later time. We set the random seed of the splitter with the
argument random_state=0

train_test_
split()

In[3]:| Auto = load_data('Auto')
Auto_train, Auto_valid = train_test_split (Auto,
test_size=196,
random_state=0)

Now we can fit a linear regression using only the observations corre-
sponding to the training set Auto_train.

In[4]:| hp_mm = MS(['horsepower'])
X_train = hp_mm.fit_transform(Auto_train)
y_train = Auto_train['mpg']
model = sm.0LS(y_train, X_train)
results = model.fit ()

We now use the predict () method of results evaluated on the model ma-
trix for this model created using the validation data set. We also calculate
the validation MSE of our model.

In[6]:| X_valid = hp_mm.transform(Auto_valid)
y_valid = Auto_valid['mpg']
valid_pred = results.predict(X_valid)
np.mean ((y_valid - valid_pred) **2)

Out[5]: 23.6166

Hence our estimate for the validation MSE of the linear regression fit is
23.62.

We can also estimate the validation error for higher-degree polynomial
regressions. We first provide a function evalMSE() that takes a model string
as well as a training and test set and returns the MSE on the test set.

In[6]:| def evalMSE(terms,
response,
train,
test) :

mm = MS(terms)

X_train = mm.fit_transform(train)
y_train = train[response]
X_test = mm.transform(test)

y_test = test[responsel]

5.3 Lab: Cross-Validation and the Bootstrap 217

results = sm.0LS(y_train, X_train).fit()
test_pred = results.predict(X_test)

return np.mean((y_test - test_pred)**2)

Let’s use this function to estimate the validation MSE using linear,
quadratic and cubic fits. We use the enumerate () function here, which gives

both the values and indices of objects as one iterates over a for loop. enumerate ()

In[7]:| MSE = np.zeros(3)
for idx, degree in enumerate(range(1l, 4)):
MSE[idx] = evalMSE([poly('horsepower', degree)l],
‘mpg ',
Auto_train,
Auto_valid)
MSE

Out[7]: array([23.62, 18.76, 18.80])

These error rates are 23.62,18.76, and 18.80, respectively. If we choose a
different training/validation split instead, then we can expect somewhat
different errors on the validation set.

In[8]:| Auto_train, Auto_valid = train_test_split (Auto,
test_size=196,
random_state=3)

MSE = np.zeros(3)
for idx, degree in enumerate(range(1l, 4)):
MSE[idx] = evalMSE([poly('horsepower', degree)],
'mpg’,
Auto_train,
Auto_valid)
MSE

Out[8]: array ([20.76, 16.95, 16.97])

Using this split of the observations into a training set and a validation
set, we find that the validation set error rates for the models with linear,
quadratic, and cubic terms are 20.76, 16.95, and 16.97, respectively.
These results are consistent with our previous findings: a model that
predicts mpg using a quadratic function of horsepower performs better than
a model that involves only a linear function of horsepower, and there is no
evidence of an improvement in using a cubic function of horsepower.

5.3.2 (Cross-Validation

In theory, the cross-validation estimate can be computed for any general-
ized linear model. In practice, however, the simplest way to cross-validate
in Python is to use sklearn, which has a different interface or API than
statsmodels, the code we have been using to fit GLMs.

This is a problem which often confronts data scientists: “I have a function
to do task A, and need to feed it into something that performs task B, so
that I can compute B(A(D)), where D is my data.” When A and B don’t

naturally speak to each other, this requires the use of a wrapper. In the ISLP wrapper

218 5. Resampling Methods

package, we provide a wrapper, sklearn_sm(), that enables us to easily use
the cross-validation tools of sklearn with models fit by statsmodels.

The class sklearn_sm() has as its first argument a model from statsmodels.
It can take two additional optional arguments: model_str which can be used
to specify a formula, and model_args which should be a dictionary of addi-
tional arguments used when fitting the model. For example, to fit a logistic
regression model we have to specify a family argument. This is passed as
model_args={'family':sm.families.Binomial()}

Here is our wrapper in action:

sklearn_sm()

In[9]:| hp_model = sklearn_sm(sm.OLS,
MS(['horsepower']))
X, Y = Auto.drop(columns=['mpg']), Auto['mpg']

cv_results = cross_validate (hp_model,

X,

Y,

cv=Auto.shape [0])
cv_err = np.mean(cv_results['test_score'])
cv_err

Out[9]: 24.2315

The arguments to cross_validate() are as follows: an object with the ap-
propriate fit (), predict (), and score() methods, an array of features X and
a response Y. We also included an additional argument cv to cross_validate();
specifying an integer K results in K-fold cross-validation. We have provided
a value corresponding to the total number of observations, which results
in leave-one-out cross-validation (LOOCV). The cross_validate() func- __ __
tion produces a dictionary with several components; we simply want the yalidate()
cross-validated test score here (MSE), which is estimated to be 24.23.

We can repeat this procedure for increasingly complex polynomial fits.
To automate the process, we again use a for loop which iteratively fits
polynomial regressions of degree 1 to 5, computes the associated cross-
validation error, and stores it in the ith element of the vector cv_error.
The variable d in the for loop corresponds to the degree of the polynomial.
We begin by initializing the vector. This command may take a couple of
seconds to run.

In[10]:| cv_error = np.zeros(5)
H = np.array(Auto['horsepower'])
M = sklearn_sm(sm.O0LS)
for i, d in enumerate(range(1,6)):
X = np.power.outer (H, np.arange(d+1))
M_CV = cross_validate (M,

X,

Y,

cv=Auto.shape [0])
cv_error[i] = np.mean(M_CV['test_score'])

cv_error

Out[10]: array ([24.2315, 19.2482, 19.3350, 19.4244, 19.0332])

As in Figure 5.4, we see a sharp drop in the estimated test MSE between
the linear and quadratic fits, but then no clear improvement from using
higher-degree polynomials.

5.3 Lab: Cross-Validation and the Bootstrap 219

Above we introduced the outer() method of the np.power() function.
The outer) method is applied to an operation that has two arguments,
such as add (), min(), or power (). It has two arrays as arguments, and then
forms a larger array where the operation is applied to each pair of elements
of the two arrays.

.outer ()

np.power ()

In[11]:| A = np.array([3, 5, 9])
B np.array ([2, 4])
np.add.outer (A, B)

Out[11]: array ([[5, 71,
L7, 91,
[11, 1311)

In the CV example above, we used K = n, but of course we can also use
K < n. The code is very similar to the above (and is significantly faster).
Here we use KFold() to partition the data into K = 10 random groups. We
use random_state to set a random seed and initialize a vector cv_error in
which we will store the CV errors corresponding to the polynomial fits of
degrees one to five.

KFold ()

In[12]:| cv_error = np.zeros(5)
cv = KFold(n_splits=10,
shuffle=True,
random_state=0)
for i, d in enumerate(range(1,6)):
X = np.power.outer (H, np.arange(d+1))
M_CV = cross_validate (M,

X,
Y,
cv=cv)
cv_error[i] = np.mean(M_CV['test_score'])

cv_error

Out[12]: array ([24.2077, 19.1853, 19.2763, 19.4785, 19.1372])

Notice that the computation time is much shorter than that of LOOCV.
(In principle, the computation time for LOOCYV for a least squares linear
model should be faster than for K-fold CV, due to the availability of the
formula (5.2) for LOOCV; however, the generic cross_validate() function
does not make use of this formula.) We still see little evidence that using
cubic or higher-degree polynomial terms leads to a lower test error than
simply using a quadratic fit.

The cross_validate() function is flexible and can take different splitting
mechanisms as an argument. For instance, one can use the ShuffleSplit() Shuffle
funtion to implement the validation set approach just as easily as K-fold SpLit()
cross-validation.

In[13]:| validation = ShuffleSplit(n_splits=1,
test_size=196,
random_state=0)
results = cross_validate (hp_model,
Auto.drop(['mpg'], axis=1),
Auto['mpg'],
cv=validation);
results['test_score'l]

220 5. Resampling Methods

Out[13]: array ([23.6166])

In [14]:

One can estimate the variability in the test error by running the following:

validation = ShuffleSplit(n_splits=10,
test_size=196,
random_state=0)
results = cross_validate (hp_model,
Auto.drop(['mpg'], axis=1),
Auto['mpg'],
cv=validation)
results['test_score'].mean(), results['test_score'].std()

Out[14]: (23.8022, 1.4218)

In [15]:

In [16]:

Note that this standard deviation is not a valid estimate of the sam-
pling variability of the mean test score or the individual scores, since the
randomly-selected training samples overlap and hence introduce correla-
tions. But it does give an idea of the Monte Carlo variation incurred by
picking different random folds.

5.3.8 The Bootstrap

We illustrate the use of the bootstrap in the simple example of Section 5.2,
as well as on an example involving estimating the accuracy of the linear
regression model on the Auto data set.

Estimating the Accuracy of a Statistic of Interest

One of the great advantages of the bootstrap approach is that it can be
applied in almost all situations. No complicated mathematical calculations
are required. While there are several implementations of the bootstrap in
Python, its use for estimating standard error is simple enough that we write
our own function below for the case when our data is stored in a dataframe.

To illustrate the bootstrap, we start with a simple example. The Portfolio
data set in the ISLP package is described in Section 5.2. The goal is to es-
timate the sampling variance of the parameter « given in formula (5.7).
We will create a function alpha_func (), which takes as input a dataframe D
assumed to have columns X and Y, as well as a vector idx indicating which
observations should be used to estimate «. The function then outputs the
estimate for a based on the selected observations.

Portfolio = load_data('Portfolio')
def alpha_func(D, idx):
cov_ = np.cov(D[['X','Y']].loc[idx], rowvar=False)
return ((cov_[1,1] - cov_[0,1]) /
(cov_[0,0]+cov_[1,1]-2%cov_[0,1]))

This function returns an estimate for o based on applying the minimum
variance formula (5.7) to the observations indexed by the argument idx. For
instance, the following command estimates « using all 100 observations.

alpha_func(Portfolio, range(100))

5.3 Lab: Cross-Validation and the Bootstrap 221

Out[16]: 0.5758

In [17]

Out [17]

In [18]:

In [19]:

Out [19]:

Next we randomly select 100 observations from range (100), with replace-
ment. This is equivalent to constructing a new bootstrap data set and
recomputing & based on the new data set.

il rng = np.random.default_rng(0)
alpha_func(Portfolio,
rng.choice (100,
100,
replace=True))

:0.6074

This process can be generalized to create a simple function boot_SE() for

computing the bootstrap standard error for arbitrary functions that take
only a data frame as an argument.

def boot_SE(func,

D,
n=None,
B=1000,
seed=0) :
rng = np.random.default_rng(seed)
first_, second_ = 0, O
n = n or D.shape[0]
for _ in range(B):
idx = rng.choice(D.index,

n,
replace=True)
value = func(D, idx)
first_ += value
second_ += value**2
return np.sqrt(second_ / B - (first_ / B)*%*2)

Notice the use of _ as a loop variable in for _ in range(B). This is often

used if the value of the counter is unimportant and simply makes sure the
loop is executed B times.

Let’s use our function to evaluate the accuracy of our estimate of o using
B = 1,000 bootstrap replications.

alpha_SE = boot_SE(alpha_func,

Portfolio,
B=1000,
seed=0)
alpha_SE
0.0912

The final output shows that the bootstrap estimate for SE(&) is 0.0912.

Estimating the Accuracy of a Linear Regression Model

The bootstrap approach can be used to assess the variability of the coef-
ficient estimates and predictions from a statistical learning method. Here
we use the bootstrap approach in order to assess the variability of the

222 5. Resampling Methods

estimates for By and (31, the intercept and slope terms for the linear regres-
sion model that uses horsepower to predict mpg in the Auto data set. We
will compare the estimates obtained using the bootstrap to those obtained
using the formulas for SE(fy) and SE(5;) described in Section 3.1.2.

To use our boot_SE() function, we must write a function (its first argu-
ment) that takes a data frame D and indices idx as its only arguments. But
here we want to bootstrap a specific regression model, specified by a model
formula and data. We show how to do this in a few simple steps.

We start by writing a generic function boot_0LS() for bootstrapping a
regression model that takes a formula to define the corresponding regres-
sion. We use the clone() function to make a copy of the formula that can

be refit to the new dataframe. This means that any derived features such clone®)
as those defined by poly() (which we will see shortly), will be re-fit on the
resampled data frame.
In[20]:| def boot_OLS(model_matrix, response, D, idx):

D_ = D.loc[idx]

Y_ = D_[response]

X_ = clone(model_matrix).fit_transform(D_)

return sm.0LS(Y_, X_).fit().params
This is not quite what is needed as the first argument to boot_SE(). The first
two arguments which specify the model will not change in the bootstrap
process, and we would like to freeze them. The function partial() from the partial()

functools module does precisely this: it takes a function as an argument,
and freezes some of its arguments, starting from the left. We use it to freeze
the first two model-formula arguments of boot_0LS().

In[21]:| hp_func = partial(boot_OLS, MS(['horsepower'l), 'mpg')

Typing hp_func? will show that it has two arguments D and idx — it is a
version of boot_0LS() with the first two arguments frozen — and hence is
ideal as the first argument for boot_SE().

The hp_func() function can now be used in order to create bootstrap
estimates for the intercept and slope terms by randomly sampling from
among the observations with replacement. We first demonstrate its utility
on 10 bootstrap samples.

In[22]:| rng = np.random.default_rng(0)
np.array ([hp_func (Auto,
rng.choice (392,
392,
replace=True)) for _ in range(10)])

Out[22]: array ([[39.8806, -0.1568],
[38.733 , -0.147 1,
[38.3173, -0.1444],
[39.9145, -0.1578],
[39.4335, -0.1507],
[40.3663, -0.1591],
[39.6233, -0.1545],
[39.0581, -0.1495],
[38.6669, -0.1452],
[39.6428, -0.1556]])

In [23]:

Out [23]:

In [24]:

Out [24]:

In [25]:

5.3 Lab: Cross-Validation and the Bootstrap 223

Next, we use the boot_SE() function to compute the standard errors of
1,000 bootstrap estimates for the intercept and slope terms.

hp_se = boot_SE(hp_func,

Auto,
B=1000,
seed=10)
hp_se
intercept 0.8488
horsepower 0.0074

dtype: float64

This indicates that the bootstrap estimate for SE(BO) is 0.85, and that
the bootstrap estimate for SE(f;) is 0.0074. As discussed in Section 3.1.2,
standard formulas can be used to compute the standard errors for the
regression coefficients in a linear model. These can be obtained using the
summarize () function from ISLP.sm.

hp_model.fit (Auto, Auto['mpg'l)
model_se = summarize (hp_model.results_)['std err']
model_se

intercept 0.717
horsepower 0.006
Name: std err, dtype: float64

The standard error estimates for Bo and Bl obtained using the formulas
from Section 3.1.2 are 0.717 for the intercept and 0.006 for the slope. Inter-
estingly, these are somewhat different from the estimates obtained using
the bootstrap. Does this indicate a problem with the bootstrap? In fact,
it suggests the opposite. Recall that the standard formulas given in Equa-
tion 3.8 on page 75 rely on certain assumptions. For example, they depend
on the unknown parameter o2, the noise variance. We then estimate o
using the RSS. Now although the formula for the standard errors do not
rely on the linear model being correct, the estimate for o2 does. We see in
Figure 3.8 on page 99 that there is a non-linear relationship in the data,
and so the residuals from a linear fit will be inflated, and so will 62. Sec-
ondly, the standard formulas assume (somewhat unrealistically) that the
x; are fixed, and all the variability comes from the variation in the errors
€;- The bootstrap approach does not rely on any of these assumptions, and
so it is likely giving a more accurate estimate of the standard errors of fq
and 31 than the results from sm.0LS.

Below we compute the bootstrap standard error estimates and the stan-
dard linear regression estimates that result from fitting the quadratic model
to the data. Since this model provides a good fit to the data (Figure 3.8),
there is now a better correspondence between the bootstrap estimates and
the standard estimates of SE(fy), SE(31) and SE(f,).

quad_model = MS([poly('horsepower', 2, raw=True)])
quad_func = partial (boot_OLS,

quad_model,

'mpg ')
boot_SE(quad_func, Auto, B=1000)

Out [25] :

In [26]:

Out [26] :

224 5. Resampling Methods

intercept 2.067840
poly(horsepower, 2, raw=True) [0] 0.033019
poly (horsepower, 2, raw=True) [1] 0.000120

dtype: float64

We compare the results to the standard errors computed using sm.0LS().

M = sm.OLS(Auto['mpg'],

quad_model.fit_transform(Auto))

summarize (M.fit()) ['std err']

intercept 1.800
poly(horsepower, 2, raw=True) [0] 0.031
poly(horsepower, 2, raw=True) [1] 0.000
Name: std err, dtype: float64

5.4 Exercises

Conceptual

1. Using basic statistical properties of the variance, as well as single-
variable calculus, derive (5.6). In other words, prove that « given by
(5.6) does indeed minimize Var(aX + (1 — a)Y).

2. We will now derive the probability that a given observation is part
of a bootstrap sample. Suppose that we obtain a bootstrap sample
from a set of n observations.

(a)

What is the probability that the first bootstrap observation is
not the jth observation from the original sample? Justify your
answer.

What is the probability that the second bootstrap observation
is not the jth observation from the original sample?

Argue that the probability that the jth observation is not in the
bootstrap sample is (1 — 1/n)".

When n = 5, what is the probability that the jth observation is
in the bootstrap sample?

When n = 100, what is the probability that the jth observation
is in the bootstrap sample?

When n = 10,000, what is the probability that the jth observa-
tion is in the bootstrap sample?

Create a plot that displays, for each integer value of n from 1
to 100,000, the probability that the jth observation is in the
bootstrap sample. Comment on what you observe.

We will now investigate numerically the probability that a boot-
strap sample of size n = 100 contains the jth observation. Here
j = 4. We first create an array store with values that will subse-
quently be overwritten using the function np.empty(). We then

np.empty ()

	Preface
	Contents
	1 Introduction
	An Overview of Statistical Learning
	Wage Data
	Stock Market Data
	Gene Expression Data

	A Brief History of Statistical Learning
	This Book
	Who Should Read This Book?
	Notation and Simple Matrix Algebra
	Organization of This Book
	Data Sets Used in Labs and Exercises
	Book Website
	Acknowledgements

	2 Statistical Learning
	2.1 What Is Statistical Learning?
	2.1.1 Why Estimate f?
	2.1.2 How Do We Estimate f?
	2.1.3 The Trade-Off Between Prediction Accuracy and Model Interpretability
	2.1.4 Supervised Versus Unsupervised Learning
	2.1.5 Regression Versus Classification Problems

	2.2 Assessing Model Accuracy
	2.2.1 Measuring the Quality of Fit
	2.2.2 The Bias-Variance Trade-Off
	2.2.3 The Classification Setting

	2.3 Lab: Introduction to Python
	2.3.1 Getting Started
	2.3.2 Basic Commands
	2.3.3 Introduction to Numerical Python
	2.3.4 Graphics
	2.3.5 Sequences and Slice Notation
	2.3.6 Indexing Data
	2.3.7 Loading Data
	2.3.8 For Loops
	2.3.9 Additional Graphical and Numerical Summaries

	2.4 Exercises
	Conceptual
	Applied

	3 Linear Regression
	3.1 Simple Linear Regression
	3.1.1 Estimating the Coefficients
	3.1.2 Assessing the Accuracy of the Coefficient Estimates
	3.1.3 Assessing the Accuracy of the Model

	3.2 Multiple Linear Regression
	3.2.1 Estimating the Regression Coefficients
	3.2.2 Some Important Questions

	3.3 Other Considerations in the Regression Model
	3.3.1 Qualitative Predictors
	3.3.2 Extensions of the Linear Model
	3.3.3 Potential Problems

	3.4 The Marketing Plan
	3.5 Comparison of Linear Regression with K-Nearest Neighbors
	3.6 Lab: Linear Regression
	3.6.1 Importing packages
	3.6.2 Simple Linear Regression
	3.6.3 Multiple Linear Regression
	3.6.4 Multivariate Goodness of Fit
	3.6.5 Interaction Terms
	3.6.6 Non-linear Transformations of the Predictors
	3.6.7 Qualitative Predictors

	3.7 Exercises
	Conceptual
	Applied

	4 Classification
	4.1 An Overview of Classification
	4.2 Why Not Linear Regression?
	4.3 Logistic Regression
	4.3.1 The Logistic Model
	4.3.2 Estimating the Regression Coefficients
	4.3.3 Making Predictions
	4.3.4 Multiple Logistic Regression
	4.3.5 Multinomial Logistic Regression

	4.4 Generative Models for Classification
	4.4.1 Linear Discriminant Analysis for p = 1
	4.4.2 Linear Discriminant Analysis for p >1
	4.4.3 Quadratic Discriminant Analysis
	4.4.4 Naive Bayes

	4.5 A Comparison of Classification Methods
	4.5.1 An Analytical Comparison
	4.5.2 An Empirical Comparison

	4.6 Generalized Linear Models
	4.6.1 Linear Regression on the Bikeshare Data
	4.6.2 Poisson Regression on the Bikeshare Data
	4.6.3 Generalized Linear Models in Greater Generality

	4.7 Lab: Logistic Regression, LDA, QDA, and KNN
	4.7.1 The Stock Market Data
	4.7.2 Logistic Regression
	4.7.3 Linear Discriminant Analysis
	4.7.4 Quadratic Discriminant Analysis
	4.7.5 Naive Bayes
	4.7.6 K-Nearest Neighbors
	4.7.7 Linear and Poisson Regression on the Bikeshare Data

	4.8 Exercises
	Conceptual
	Applied

	5 Resampling Methods
	5.1 Cross-Validation
	5.1.1 The Validation Set Approach
	5.1.2 Leave-One-Out Cross-Validation
	5.1.3 k-Fold Cross-Validation
	5.1.4 Bias-Variance Trade-Off for k-Fold Cross-Validation
	5.1.5 Cross-Validation on Classification Problems

	5.2 The Bootstrap
	5.3 Lab: Cross-Validation and the Bootstrap
	5.3.1 The Validation Set Approach
	5.3.2 Cross-Validation
	5.3.3 The Bootstrap

	5.4 Exercises
	Conceptual
	Applied

	6 Linear Model Selection and Regularization
	6.1 Subset Selection
	6.1.1 Best Subset Selection
	6.1.2 Stepwise Selection
	6.1.3 Choosing the Optimal Model

	6.2 Shrinkage Methods
	6.2.1 Ridge Regression
	6.2.2 The Lasso
	6.2.3 Selecting the Tuning Parameter

	6.3 Dimension Reduction Methods
	6.3.1 Principal Components Regression
	6.3.2 Partial Least Squares

	6.4 Considerations in High Dimensions
	6.4.1 High-Dimensional Data
	6.4.2 What Goes Wrong in High Dimensions?
	6.4.3 Regression in High Dimensions
	6.4.4 Interpreting Results in High Dimensions

	6.5 Lab: Linear Models and Regularization Methods
	6.5.1 Subset Selection Methods
	6.5.2 Ridge Regression and the Lasso
	6.5.3 PCR and PLS Regression

	6.6 Exercises
	Conceptual
	Applied

	7 Moving Beyond Linearity
	7.1 Polynomial Regression
	7.2 Step Functions
	7.3 Basis Functions
	7.4 Regression Splines
	7.4.1 Piecewise Polynomials
	7.4.2 Constraints and Splines
	7.4.3 The Spline Basis Representation
	7.4.4 Choosing the Number and Locations of the Knots
	7.4.5 Comparison to Polynomial Regression

	7.5 Smoothing Splines
	7.5.1 An Overview of Smoothing Splines
	7.5.2 Choosing the Smoothing Parameter λ

	7.6 Local Regression
	7.7 Generalized Additive Models
	7.7.1 GAMs for Regression Problems
	7.7.2 GAMs for Classification Problems

	7.8 Lab: Non-Linear Modeling
	7.8.1 Polynomial Regression and Step Functions
	7.8.2 Splines
	7.8.3 Smoothing Splines and GAMs
	7.8.4 Local Regression

	7.9 Exercises
	Conceptual
	Applied

	8 Tree-Based Methods
	8.1 The Basics of Decision Trees
	8.1.1 Regression Trees
	8.1.2 Classification Trees
	8.1.3 Trees Versus Linear Models
	8.1.4 Advantages and Disadvantages of Trees

	8.2 Bagging, Random Forests, Boosting, and Bayesian Additive Regression Trees
	8.2.1 Bagging
	8.2.2 Random Forests
	8.2.3 Boosting
	8.2.4 Bayesian Additive Regression Trees
	8.2.5 Summary of Tree Ensemble Methods

	8.3 Lab: Tree-Based Methods
	8.3.1 Fitting Classification Trees
	8.3.2 Fitting Regression Trees
	8.3.3 Bagging and Random Forests
	8.3.4 Boosting
	8.3.5 Bayesian Additive Regression Trees

	8.4 Exercises
	Conceptual
	Applied

	9 Support Vector Machines
	9.1 Maximal Margin Classifier
	9.1.1 What Is a Hyperplane?
	9.1.2 Classification Using a Separating Hyperplane
	9.1.3 The Maximal Margin Classifier
	9.1.4 Construction of the Maximal Margin Classifier
	9.1.5 The Non-separable Case

	9.2 Support Vector Classifiers
	9.2.1 Overview of the Support Vector Classifier
	9.2.2 Details of the Support Vector Classifier

	9.3 Support Vector Machines
	9.3.1 Classification with Non-Linear Decision Boundaries
	9.3.2 The Support Vector Machine
	9.3.3 An Application to the Heart Disease Data

	9.4 SVMs with More than Two Classes
	9.4.1 One-Versus-One Classification
	9.4.2 One-Versus-All Classification

	9.5 Relationship to Logistic Regression
	9.6 Lab: Support Vector Machines
	9.6.1 Support Vector Classifier
	9.6.2 Support Vector Machine
	9.6.3 ROC Curves
	9.6.4 SVM with Multiple Classes
	9.6.5 Application to Gene Expression Data

	9.7 Exercises
	Conceptual
	Applied

	10 Deep Learning
	10.1 Single Layer Neural Networks
	10.2 Multilayer Neural Networks
	10.3 Convolutional Neural Networks
	10.3.1 Convolution Layers
	10.3.2 Pooling Layers
	10.3.3 Architecture of a Convolutional Neural Network
	10.3.4 Data Augmentation
	10.3.5 Results Using a Pretrained Classifier

	10.4 Document Classification
	10.5 Recurrent Neural Networks
	10.5.1 Sequential Models for Document Classification
	10.5.2 Time Series Forecasting
	10.5.3 Summary of RNNs

	10.6 When to Use Deep Learning
	10.7 Fitting a Neural Network
	10.7.1 Backpropagation
	10.7.2 Regularization and Stochastic Gradient Descent
	10.7.3 Dropout Learning
	10.7.4 Network Tuning

	10.8 Interpolation and Double Descent
	10.9 Lab: Deep Learning
	10.9.1 Single Layer Network on Hitters Data
	10.9.2 Multilayer Network on the MNIST Digit Data
	10.9.3 Convolutional Neural Networks
	10.9.4 Using Pretrained CNN Models
	10.9.5 IMDB Document Classification
	10.9.6 Recurrent Neural Networks

	10.10 Exercises
	Conceptual
	Applied

	11 Survival Analysis and Censored Data
	11.1 Survival and Censoring Times
	11.2 A Closer Look at Censoring
	11.3 The Kaplan–Meier Survival Curve
	11.4 The Log-Rank Test
	11.5 Regression Models With a Survival Response
	11.5.1 The Hazard Function
	11.5.2 Proportional Hazards
	11.5.3 Example: Brain Cancer Data
	11.5.4 Example: Publication Data

	11.6 Shrinkage for the Cox Model
	11.7 Additional Topics
	11.7.1 Area Under the Curve for Survival Analysis
	11.7.2 Choice of Time Scale
	11.7.3 Time-Dependent Covariates
	11.7.4 Checking the Proportional Hazards Assumption
	11.7.5 Survival Trees

	11.8 Lab: Survival Analysis
	11.8.1 Brain Cancer Data
	11.8.2 Publication Data
	11.8.3 Call Center Data

	11.9 Exercises
	Conceptual
	Applied

	12 Unsupervised Learning
	12.1 The Challenge of Unsupervised Learning
	12.2 Principal Components Analysis
	12.2.1 What Are Principal Components?
	12.2.2 Another Interpretation of Principal Components
	12.2.3 The Proportion of Variance Explained
	12.2.4 More on PCA
	12.2.5 Other Uses for Principal Components

	12.3 Missing Values and Matrix Completion
	12.4 Clustering Methods
	12.4.1 K-Means Clustering
	12.4.2 Hierarchical Clustering
	12.4.3 Practical Issues in Clustering

	12.5 Lab: Unsupervised Learning
	12.5.1 Principal Components Analysis
	12.5.2 Matrix Completion
	12.5.3 Clustering
	12.5.4 NCI60 Data Example

	12.6 Exercises
	Conceptual
	Applied

	13 Multiple Testing
	13.1 A Quick Review of Hypothesis Testing
	13.1.1 Testing a Hypothesis
	13.1.2 Type I and Type II Errors

	13.2 The Challenge of Multiple Testing
	13.3 The Family-Wise Error Rate
	13.3.1 What is the Family-Wise Error Rate?
	13.3.2 Approaches to Control the Family-Wise Error Rate
	13.3.3 Trade-Off Between the FWER and Power

	13.4 The False Discovery Rate
	13.4.1 Intuition for the False Discovery Rate
	13.4.2 The Benjamini–Hochberg Procedure

	13.5 A Re-Sampling Approach to p-Values and False Discovery Rates
	13.5.1 A Re-Sampling Approach to the p-Value
	13.5.2 A Re-Sampling Approach to the False Discovery Rate
	13.5.3 When Are Re-Sampling Approaches Useful?

	13.6 Lab: Multiple Testing
	13.6.1 Review of Hypothesis Tests
	13.6.2 Family-Wise Error Rate
	13.6.3 False Discovery Rate
	13.6.4 A Re-Sampling Approach

	13.7 Exercises
	Conceptual
	Applied

	Index

