
4
Classification

The linear regression model discussed in Chapter 3 assumes that the re-
sponse variable Y is quantitative. But in many situations, the response
variable is instead qualitative. For example, eye color is qualitative. Of- qualitativeten qualitative variables are referred to as categorical; we will use these
terms interchangeably. In this chapter, we study approaches for predicting
qualitative responses, a process that is known as classification. Predicting classificationa qualitative response for an observation can be referred to as classifying
that observation, since it involves assigning the observation to a category,
or class. On the other hand, often the methods used for classification first
predict the probability that the observation belongs to each of the cate-
gories of a qualitative variable, as the basis for making the classification.
In this sense they also behave like regression methods.

There are many possible classification techniques, or classifiers, that one classifiermight use to predict a qualitative response. We touched on some of these
in Sections 2.1.5 and 2.2.3. In this chapter we discuss some widely-used
classifiers: logistic regression, linear discriminant analysis, quadratic dis- logistic
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criminant analysis, naive Bayes, and K-nearest neighbors. The discussion

quadratic
discriminant
analysis
naive Bayes
K-nearest
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of logistic regression is used as a jumping-off point for a discussion of gen-
eralized linear models, and in particular, Poisson regression. We discuss

generalized
linear
models
Poisson
regression

more computer-intensive classification methods in later chapters: these in-
clude generalized additive models (Chapter 7); trees, random forests, and
boosting (Chapter 8); and support vector machines (Chapter 9).

4.1 An Overview of Classification
Classification problems occur often, perhaps even more so than regression
problems. Some examples include:
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1. A person arrives at the emergency room with a set of symptoms
that could possibly be attributed to one of three medical conditions.
Which of the three conditions does the individual have?

2. An online banking service must be able to determine whether or not
a transaction being performed on the site is fraudulent, on the basis
of the user’s IP address, past transaction history, and so forth.

3. On the basis of DNA sequence data for a number of patients with
and without a given disease, a biologist would like to figure out which
DNA mutations are deleterious (disease-causing) and which are not.

Just as in the regression setting, in the classification setting we have a
set of training observations (x1, y1), . . . , (xn, yn) that we can use to build
a classifier. We want our classifier to perform well not only on the training
data, but also on test observations that were not used to train the classifier.

In this chapter, we will illustrate the concept of classification using the
simulated Default data set. We are interested in predicting whether an
individual will default on his or her credit card payment, on the basis of
annual income and monthly credit card balance. The data set is displayed
in Figure 4.1. In the left-hand panel of Figure 4.1, we have plotted annual
income and monthly credit card balance for a subset of 10, 000 individuals.
The individuals who defaulted in a given month are shown in orange, and
those who did not in blue. (The overall default rate is about 3 %, so we
have plotted only a fraction of the individuals who did not default.) It
appears that individuals who defaulted tended to have higher credit card
balances than those who did not. In the center and right-hand panels of
Figure 4.1, two pairs of boxplots are shown. The first shows the distribution
of balance split by the binary default variable; the second is a similar plot
for income. In this chapter, we learn how to build a model to predict default
(Y ) for any given value of balance (X1) and income (X2). Since Y is not
quantitative, the simple linear regression model of Chapter 3 is not a good
choice: we will elaborate on this further in Section 4.2.

It is worth noting that Figure 4.1 displays a very pronounced relation-
ship between the predictor balance and the response default. In most real
applications, the relationship between the predictor and the response will
not be nearly so strong. However, for the sake of illustrating the classifica-
tion procedures discussed in this chapter, we use an example in which the
relationship between the predictor and the response is somewhat exagger-
ated.

4.2 Why Not Linear Regression?
We have stated that linear regression is not appropriate in the case of a
qualitative response. Why not?

Suppose that we are trying to predict the medical condition of a patient
in the emergency room on the basis of her symptoms. In this simplified
example, there are three possible diagnoses: stroke, drug overdose, and
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FIGURE 4.1. The Default data set. Left: The annual incomes and monthly
credit card balances of a number of individuals. The individuals who defaulted on
their credit card payments are shown in orange, and those who did not are shown
in blue. Center: Boxplots of balance as a function of default status. Right:
Boxplots of income as a function of default status.

epileptic seizure. We could consider encoding these values as a quantita-
tive response variable, Y , as follows:

Y =






1 if stroke;
2 if drug overdose;
3 if epileptic seizure.

Using this coding, least squares could be used to fit a linear regression model
to predict Y on the basis of a set of predictors X1, . . . , Xp. Unfortunately,
this coding implies an ordering on the outcomes, putting drug overdose in
between stroke and epileptic seizure, and insisting that the difference
between stroke and drug overdose is the same as the difference between
drug overdose and epileptic seizure. In practice there is no particular
reason that this needs to be the case. For instance, one could choose an
equally reasonable coding,

Y =






1 if epileptic seizure;
2 if stroke;
3 if drug overdose,

which would imply a totally different relationship among the three condi-
tions. Each of these codings would produce fundamentally different linear
models that would ultimately lead to different sets of predictions on test
observations.

If the response variable’s values did take on a natural ordering, such as
mild, moderate, and severe, and we felt the gap between mild and moderate
was similar to the gap between moderate and severe, then a 1, 2, 3 coding
would be reasonable. Unfortunately, in general there is no natural way to
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convert a qualitative response variable with more than two levels into a
quantitative response that is ready for linear regression.

For a binary (two level) qualitative response, the situation is better. For binaryinstance, perhaps there are only two possibilities for the patient’s medical
condition: stroke and drug overdose. We could then potentially use the
dummy variable approach from Section 3.3.1 to code the response as follows:

Y =

{
0 if stroke;
1 if drug overdose.

We could then fit a linear regression to this binary response, and predict
drug overdose if Ŷ > 0.5 and stroke otherwise. In the binary case it is not
hard to show that even if we flip the above coding, linear regression will
produce the same final predictions.

For a binary response with a 0/1 coding as above, regression by least
squares is not completely unreasonable: it can be shown that the Xβ̂ ob-
tained using linear regression is in fact an estimate of Pr(drug overdose|X)
in this special case. However, if we use linear regression, some of our es-
timates might be outside the [0, 1] interval (see Figure 4.2), making them
hard to interpret as probabilities! Nevertheless, the predictions provide an
ordering and can be interpreted as crude probability estimates. Curiously,
it turns out that the classifications that we get if we use linear regression
to predict a binary response will be the same as for the linear discriminant
analysis (LDA) procedure we discuss in Section 4.4.

To summarize, there are at least two reasons not to perform classifica-
tion using a regression method: (a) a regression method cannot accommo-
date a qualitative response with more than two classes; (b) a regression
method will not provide meaningful estimates of Pr(Y |X), even with just
two classes. Thus, it is preferable to use a classification method that is
truly suited for qualitative response values. In the next section, we present
logistic regression, which is well-suited for the case of a binary qualita-
tive response; in later sections we will cover classification methods that are
appropriate when the qualitative response has two or more classes.

4.3 Logistic Regression
Consider again the Default data set, where the response default falls into
one of two categories, Yes or No. Rather than modeling this response Y
directly, logistic regression models the probability that Y belongs to a par-
ticular category.

For the Default data, logistic regression models the probability of default.
For example, the probability of default given balance can be written as

Pr(default = Yes|balance).

The values of Pr(default = Yes|balance), which we abbreviate p(balance),
will range between 0 and 1. Then for any given value of balance, a prediction
can be made for default. For example, one might predict default = Yes
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FIGURE 4.2. Classification using the Default data. Left: Estimated probability
of default using linear regression. Some estimated probabilities are negative! The
orange ticks indicate the 0/1 values coded for default(No or Yes). Right: Predicted
probabilities of default using logistic regression. All probabilities lie between 0
and 1.

for any individual for whom p(balance) > 0.5. Alternatively, if a company
wishes to be conservative in predicting individuals who are at risk for de-
fault, then they may choose to use a lower threshold, such as p(balance) >
0.1.

4.3.1 The Logistic Model
How should we model the relationship between p(X) = Pr(Y = 1|X) and
X? (For convenience we are using the generic 0/1 coding for the response.)
In Section 4.2 we considered using a linear regression model to represent
these probabilities:

p(X) = β0 + β1X. (4.1)

If we use this approach to predict default=Yes using balance, then we
obtain the model shown in the left-hand panel of Figure 4.2. Here we see
the problem with this approach: for balances close to zero we predict a
negative probability of default; if we were to predict for very large balances,
we would get values bigger than 1. These predictions are not sensible, since
of course the true probability of default, regardless of credit card balance,
must fall between 0 and 1. This problem is not unique to the credit default
data. Any time a straight line is fit to a binary response that is coded as
0 or 1, in principle we can always predict p(X) < 0 for some values of X
and p(X) > 1 for others (unless the range of X is limited).

To avoid this problem, we must model p(X) using a function that gives
outputs between 0 and 1 for all values of X. Many functions meet this
description. In logistic regression, we use the logistic function, logistic

function
p(X) =

eβ0+β1X

1 + eβ0+β1X
. (4.2)

To fit the model (4.2), we use a method called maximum likelihood, which maximum
likelihoodwe discuss in the next section. The right-hand panel of Figure 4.2 illustrates

the fit of the logistic regression model to the Default data. Notice that for
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low balances we now predict the probability of default as close to, but never
below, zero. Likewise, for high balances we predict a default probability
close to, but never above, one. The logistic function will always produce
an S-shaped curve of this form, and so regardless of the value of X, we
will obtain a sensible prediction. We also see that the logistic model is
better able to capture the range of probabilities than is the linear regression
model in the left-hand plot. The average fitted probability in both cases is
0.0333 (averaged over the training data), which is the same as the overall
proportion of defaulters in the data set.

After a bit of manipulation of (4.2), we find that
p(X)

1− p(X)
= eβ0+β1X . (4.3)

The quantity p(X)/[1−p(X)] is called the odds, and can take on any value oddsbetween 0 and ∞. Values of the odds close to 0 and ∞ indicate very low
and very high probabilities of default, respectively. For example, on average
1 in 5 people with an odds of 1/4 will default, since p(X) = 0.2 implies an
odds of 0.2

1−0.2 = 1/4. Likewise, on average nine out of every ten people with
an odds of 9 will default, since p(X) = 0.9 implies an odds of 0.9

1−0.9 = 9.
Odds are traditionally used instead of probabilities in horse-racing, since
they relate more naturally to the correct betting strategy.

By taking the logarithm of both sides of (4.3), we arrive at

log

(
p(X)

1− p(X)

)
= β0 + β1X. (4.4)

The left-hand side is called the log odds or logit. We see that the logistic log odds
logitregression model (4.2) has a logit that is linear in X.

Recall from Chapter 3 that in a linear regression model, β1 gives the
average change in Y associated with a one-unit increase in X. By contrast,
in a logistic regression model, increasing X by one unit changes the log
odds by β1 (4.4). Equivalently, it multiplies the odds by eβ1 (4.3). However,
because the relationship between p(X) and X in (4.2) is not a straight line,
β1 does not correspond to the change in p(X) associated with a one-unit
increase in X. The amount that p(X) changes due to a one-unit change in
X depends on the current value of X. But regardless of the value of X, if
β1 is positive then increasing X will be associated with increasing p(X),
and if β1 is negative then increasing X will be associated with decreasing
p(X). The fact that there is not a straight-line relationship between p(X)
and X, and the fact that the rate of change in p(X) per unit change in X
depends on the current value of X, can also be seen by inspection of the
right-hand panel of Figure 4.2.

4.3.2 Estimating the Regression Coefficients
The coefficients β0 and β1 in (4.2) are unknown, and must be estimated
based on the available training data. In Chapter 3, we used the least squares
approach to estimate the unknown linear regression coefficients. Although
we could use (non-linear) least squares to fit the model (4.4), the more
general method of maximum likelihood is preferred, since it has better sta-
tistical properties. The basic intuition behind using maximum likelihood
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to fit a logistic regression model is as follows: we seek estimates for β0 and
β1 such that the predicted probability p̂(xi) of default for each individual,
using (4.2), corresponds as closely as possible to the individual’s observed
default status. In other words, we try to find β̂0 and β̂1 such that plugging
these estimates into the model for p(X), given in (4.2), yields a number
close to one for all individuals who defaulted, and a number close to zero
for all individuals who did not. This intuition can be formalized using a
mathematical equation called a likelihood function: likelihood

function
"(β0,β1) =

∏

i:yi=1

p(xi)
∏

i′:yi′=0

(1− p(xi′)). (4.5)

The estimates β̂0 and β̂1 are chosen to maximize this likelihood function.
Maximum likelihood is a very general approach that is used to fit many

of the non-linear models that we examine throughout this book. In the
linear regression setting, the least squares approach is in fact a special case
of maximum likelihood. The mathematical details of maximum likelihood
are beyond the scope of this book. However, in general, logistic regression
and other models can be easily fit using statistical software such as R, and
so we do not need to concern ourselves with the details of the maximum
likelihood fitting procedure.

Table 4.1 shows the coefficient estimates and related information that
result from fitting a logistic regression model on the Default data in order
to predict the probability of default=Yes using balance. We see that β̂1 =
0.0055; this indicates that an increase in balance is associated with an
increase in the probability of default. To be precise, a one-unit increase in
balance is associated with an increase in the log odds of default by 0.0055
units.

Many aspects of the logistic regression output shown in Table 4.1 are
similar to the linear regression output of Chapter 3. For example, we can
measure the accuracy of the coefficient estimates by computing their stan-
dard errors. The z-statistic in Table 4.1 plays the same role as the t-statistic
in the linear regression output, for example in Table 3.1 on page 77. For
instance, the z-statistic associated with β1 is equal to β̂1/SE(β̂1), and so a
large (absolute) value of the z-statistic indicates evidence against the null
hypothesis H0 : β1 = 0. This null hypothesis implies that p(X) = eβ0

1+eβ0
: in

other words, that the probability of default does not depend on balance.
Since the p-value associated with balance in Table 4.1 is tiny, we can reject
H0. In other words, we conclude that there is indeed an association between
balance and probability of default. The estimated intercept in Table 4.1
is typically not of interest; its main purpose is to adjust the average fitted
probabilities to the proportion of ones in the data (in this case, the overall
default rate).

4.3.3 Making Predictions
Once the coefficients have been estimated, we can compute the probability
of default for any given credit card balance. For example, using the coeffi-
cient estimates given in Table 4.1, we predict that the default probability
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Coefficient Std. error z-statistic p-value
Intercept −10.6513 0.3612 −29.5 <0.0001
balance 0.0055 0.0002 24.9 <0.0001

TABLE 4.1. For the Default data, estimated coefficients of the logistic regres-
sion model that predicts the probability of default using balance. A one-unit
increase in balance is associated with an increase in the log odds of default by
0.0055 units.

Coefficient Std. error z-statistic p-value
Intercept −3.5041 0.0707 −49.55 <0.0001
student[Yes] 0.4049 0.1150 3.52 0.0004

TABLE 4.2. For the Default data, estimated coefficients of the logistic regression
model that predicts the probability of default using student status. Student status
is encoded as a dummy variable, with a value of 1 for a student and a value of 0
for a non-student, and represented by the variable student[Yes] in the table.

for an individual with a balance of $1, 000 is

p̂(X) =
eβ̂0+β̂1X

1 + eβ̂0+β̂1X
=

e−10.6513+0.0055×1,000

1 + e−10.6513+0.0055×1,000
= 0.00576,

which is below 1%. In contrast, the predicted probability of default for an
individual with a balance of $2, 000 is much higher, and equals 0.586 or
58.6%.

One can use qualitative predictors with the logistic regression model us-
ing the dummy variable approach from Section 3.3.1. As an example, the
Default data set contains the qualitative variable student. To fit a model
that uses student status as a predictor variable, we simply create a dummy
variable that takes on a value of 1 for students and 0 for non-students. The
logistic regression model that results from predicting probability of default
from student status can be seen in Table 4.2. The coefficient associated
with the dummy variable is positive, and the associated p-value is statisti-
cally significant. This indicates that students tend to have higher default
probabilities than non-students:

P̂r(default=Yes|student=Yes) =
e−3.5041+0.4049×1

1 + e−3.5041+0.4049×1
= 0.0431,

P̂r(default=Yes|student=No) =
e−3.5041+0.4049×0

1 + e−3.5041+0.4049×0
= 0.0292.

4.3.4 Multiple Logistic Regression
We now consider the problem of predicting a binary response using multiple
predictors. By analogy with the extension from simple to multiple linear
regression in Chapter 3, we can generalize (4.4) as follows:

log

(
p(X)

1− p(X)

)
= β0 + β1X1 + · · ·+ βpXp, (4.6)

where X = (X1, . . . , Xp) are p predictors. Equation 4.6 can be rewritten as

p(X) =
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
. (4.7)
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Coefficient Std. error z-statistic p-value
Intercept −10.8690 0.4923 −22.08 <0.0001
balance 0.0057 0.0002 24.74 <0.0001
income 0.0030 0.0082 0.37 0.7115
student[Yes] −0.6468 0.2362 −2.74 0.0062

TABLE 4.3. For the Default data, estimated coefficients of the logistic regression
model that predicts the probability of default using balance, income, and student
status. Student status is encoded as a dummy variable student[Yes], with a value
of 1 for a student and a value of 0 for a non-student. In fitting this model, income
was measured in thousands of dollars.

Just as in Section 4.3.2, we use the maximum likelihood method to estimate
β0,β1, . . . ,βp.

Table 4.3 shows the coefficient estimates for a logistic regression model
that uses balance, income (in thousands of dollars), and student status to
predict probability of default. There is a surprising result here. The p-
values associated with balance and the dummy variable for student status
are very small, indicating that each of these variables is associated with
the probability of default. However, the coefficient for the dummy variable
is negative, indicating that students are less likely to default than non-
students. In contrast, the coefficient for the dummy variable is positive in
Table 4.2. How is it possible for student status to be associated with an
increase in probability of default in Table 4.2 and a decrease in probability
of default in Table 4.3? The left-hand panel of Figure 4.3 provides a graph-
ical illustration of this apparent paradox. The orange and blue solid lines
show the average default rates for students and non-students, respectively,
as a function of credit card balance. The negative coefficient for student in
the multiple logistic regression indicates that for a fixed value of balance
and income, a student is less likely to default than a non-student. Indeed,
we observe from the left-hand panel of Figure 4.3 that the student default
rate is at or below that of the non-student default rate for every value of
balance. But the horizontal broken lines near the base of the plot, which
show the default rates for students and non-students averaged over all val-
ues of balance and income, suggest the opposite effect: the overall student
default rate is higher than the non-student default rate. Consequently, there
is a positive coefficient for student in the single variable logistic regression
output shown in Table 4.2.

The right-hand panel of Figure 4.3 provides an explanation for this dis-
crepancy. The variables student and balance are correlated. Students tend
to hold higher levels of debt, which is in turn associated with higher prob-
ability of default. In other words, students are more likely to have large
credit card balances, which, as we know from the left-hand panel of Fig-
ure 4.3, tend to be associated with high default rates. Thus, even though
an individual student with a given credit card balance will tend to have a
lower probability of default than a non-student with the same credit card
balance, the fact that students on the whole tend to have higher credit card
balances means that overall, students tend to default at a higher rate than
non-students. This is an important distinction for a credit card company
that is trying to determine to whom they should offer credit. A student is
riskier than a non-student if no information about the student’s credit card
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FIGURE 4.3. Confounding in the Default data. Left: Default rates are shown
for students (orange) and non-students (blue). The solid lines display default rate
as a function of balance, while the horizontal broken lines display the overall
default rates. Right: Boxplots of balance for students (orange) and non-students
(blue) are shown.

balance is available. However, that student is less risky than a non-student
with the same credit card balance!

This simple example illustrates the dangers and subtleties associated
with performing regressions involving only a single predictor when other
predictors may also be relevant. As in the linear regression setting, the
results obtained using one predictor may be quite different from those ob-
tained using multiple predictors, especially when there is correlation among
the predictors. In general, the phenomenon seen in Figure 4.3 is known as
confounding. confoundingBy substituting estimates for the regression coefficients from Table 4.3
into (4.7), we can make predictions. For example, a student with a credit
card balance of $1, 500 and an income of $40, 000 has an estimated proba-
bility of default of

p̂(X) =
e−10.869+0.00574×1,500+0.003×40−0.6468×1

1 + e−10.869+0.00574×1,500+0.003×40−0.6468×1
= 0.058. (4.8)

A non-student with the same balance and income has an estimated prob-
ability of default of

p̂(X) =
e−10.869+0.00574×1,500+0.003×40−0.6468×0

1 + e−10.869+0.00574×1,500+0.003×40−0.6468×0
= 0.105. (4.9)

(Here we multiply the income coefficient estimate from Table 4.3 by 40,
rather than by 40,000, because in that table the model was fit with income
measured in units of $1, 000.)

4.3.5 Multinomial Logistic Regression
We sometimes wish to classify a response variable that has more than two
classes. For example, in Section 4.2 we had three categories of medical con-
dition in the emergency room: stroke, drug overdose, epileptic seizure.
However, the logistic regression approach that we have seen in this section
only allows for K = 2 classes for the response variable.
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It turns out that it is possible to extend the two-class logistic regression
approach to the setting of K > 2 classes. This extension is sometimes
known as multinomial logistic regression. To do this, we first select a single multinomial

logistic
regression

class to serve as the baseline; without loss of generality, we select the Kth
class for this role. Then we replace the model (4.7) with the model

Pr(Y = k|X = x) =
eβk0+βk1x1+···+βkpxp

1 +
∑K−1

l=1 eβl0+βl1x1+···+βlpxp
(4.10)

for k = 1, . . . ,K−1, and

Pr(Y = K|X = x) =
1

1 +
∑K−1

l=1 eβl0+βl1x1+···+βlpxp
. (4.11)

It is not hard to show that for k = 1, . . . ,K−1,

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= βk0 + βk1x1 + · · ·+ βkpxp. (4.12)

Notice that (4.12) is quite similar to (4.6). Equation 4.12 indicates that once
again, the log odds between any pair of classes is linear in the features.

It turns out that in (4.10)–(4.12), the decision to treat the Kth class as
the baseline is unimportant. For example, when classifying emergency room
visits into stroke, drug overdose, and epileptic seizure, suppose that we
fit two multinomial logistic regression models: one treating stroke as the
baseline, another treating drug overdose as the baseline. The coefficient
estimates will differ between the two fitted models due to the differing
choice of baseline, but the fitted values (predictions), the log odds between
any pair of classes, and the other key model outputs will remain the same.

Nonetheless, interpretation of the coefficients in a multinomial logistic
regression model must be done with care, since it is tied to the choice
of baseline. For example, if we set epileptic seizure to be the baseline,
then we can interpret βstroke0 as the log odds of stroke versus epileptic
seizure, given that x1 = · · · = xp = 0. Furthermore, a one-unit increase
in Xj is associated with a βstrokej increase in the log odds of stroke over
epileptic seizure. Stated another way, if Xj increases by one unit, then

Pr(Y = stroke|X = x)

Pr(Y = epileptic seizure|X = x)

increases by eβstrokej .
We now briefly present an alternative coding for multinomial logistic

regression, known as the softmax coding. The softmax coding is equivalent softmaxto the coding just described in the sense that the fitted values, log odds
between any pair of classes, and other key model outputs will remain the
same, regardless of coding. But the softmax coding is used extensively in
some areas of the machine learning literature (and will appear again in
Chapter 10), so it is worth being aware of it. In the softmax coding, rather
than selecting a baseline class, we treat all K classes symmetrically, and
assume that for k = 1, . . . ,K,

Pr(Y = k|X = x) =
eβk0+βk1x1+···+βkpxp

∑K
l=1 e

βl0+βl1x1+···+βlpxp
. (4.13)
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Thus, rather than estimating coefficients for K − 1 classes, we actually
estimate coefficients for all K classes. It is not hard to see that as a result
of (4.13), the log odds ratio between the kth and k′th classes equals

log

(
Pr(Y = k|X = x)
Pr(Y = k′|X = x)

)
= (βk0 − βk′0) + (βk1 − βk′1)x1 + · · ·+ (βkp − βk′p)xp.

(4.14)

4.4 Generative Models for Classification
Logistic regression involves directly modeling Pr(Y = k|X = x) using the
logistic function, given by (4.7) for the case of two response classes. In
statistical jargon, we model the conditional distribution of the response Y ,
given the predictor(s) X. We now consider an alternative and less direct
approach to estimating these probabilities. In this new approach, we model
the distribution of the predictors X separately in each of the response
classes (i.e. for each value of Y ). We then use Bayes’ theorem to flip these
around into estimates for Pr(Y = k|X = x). When the distribution of X
within each class is assumed to be normal, it turns out that the model is
very similar in form to logistic regression.

Why do we need another method, when we have logistic regression?
There are several reasons:

• When there is substantial separation between the two classes, the
parameter estimates for the logistic regression model are surprisingly
unstable. The methods that we consider in this section do not suffer
from this problem.

• If the distribution of the predictors X is approximately normal in
each of the classes and the sample size is small, then the approaches
in this section may be more accurate than logistic regression.

• The methods in this section can be naturally extended to the case
of more than two response classes. (In the case of more than two
response classes, we can also use multinomial logistic regression from
Section 4.3.5.)

Suppose that we wish to classify an observation into one of K classes,
where K ≥ 2. In other words, the qualitative response variable Y can take
on K possible distinct and unordered values. Let πk represent the overall
or prior probability that a randomly chosen observation comes from the prior
kth class. Let fk(X) ≡ Pr(X|Y = k)1 denote the density function of X density

functionfor an observation that comes from the kth class. In other words, fk(x) is
relatively large if there is a high probability that an observation in the kth
class has X ≈ x, and fk(x) is small if it is very unlikely that an observation
in the kth class has X ≈ x. Then Bayes’ theorem states that Bayes’

theorem
1Technically, this definition is only correct if X is a qualitative random variable. If

X is quantitative, then fk(x)dx corresponds to the probability of X falling in a small
region dx around x.
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Pr(Y = k|X = x) =
πkfk(x)∑K
l=1 πlfl(x)

. (4.15)

In accordance with our earlier notation, we will use the abbreviation pk(x) =
Pr(Y = k|X = x); this is the posterior probability that an observation posterior
X = x belongs to the kth class. That is, it is the probability that the
observation belongs to the kth class, given the predictor value for that
observation.

Equation 4.15 suggests that instead of directly computing the posterior
probability pk(x) as in Section 4.3.1, we can simply plug in estimates of πk

and fk(x) into (4.15). In general, estimating πk is easy if we have a random
sample from the population: we simply compute the fraction of the training
observations that belong to the kth class. However, estimating the density
function fk(x) is much more challenging. As we will see, to estimate fk(x),
we will typically have to make some simplifying assumptions.

We know from Chapter 2 that the Bayes classifier, which classifies an
observation x to the class for which pk(x) is largest, has the lowest possible
error rate out of all classifiers. (Of course, this is only true if all of the
terms in (4.15) are correctly specified.) Therefore, if we can find a way to
estimate fk(x), then we can plug it into (4.15) in order to approximate the
Bayes classifier.

In the following sections, we discuss three classifiers that use different
estimates of fk(x) in (4.15) to approximate the Bayes classifier: linear dis-
criminant analysis, quadratic discriminant analysis, and naive Bayes.

4.4.1 Linear Discriminant Analysis for p = 1

For now, assume that p = 1—that is, we have only one predictor. We would
like to obtain an estimate for fk(x) that we can plug into (4.15) in order to
estimate pk(x). We will then classify an observation to the class for which
pk(x) is greatest. To estimate fk(x), we will first make some assumptions
about its form.

In particular, we assume that fk(x) is normal or Gaussian. In the one- normal
Gaussiandimensional setting, the normal density takes the form

fk(x) =
1√
2πσk

exp

(
− 1

2σ2
k

(x− µk)
2

)
, (4.16)

where µk and σ2
k are the mean and variance parameters for the kth class.

For now, let us further assume that σ2
1 = · · · = σ2

K : that is, there is a shared
variance term across all K classes, which for simplicity we can denote by
σ2. Plugging (4.16) into (4.15), we find that

pk(x) =
πk

1√
2πσ

exp
(
− 1

2σ2 (x− µk)2
)

∑K
l=1 πl

1√
2πσ

exp
(
− 1

2σ2 (x− µl)2
) . (4.17)

(Note that in (4.17), πk denotes the prior probability that an observation
belongs to the kth class, not to be confused with π ≈ 3.14159, the math-
ematical constant.) The Bayes classifier2 involves assigning an observation

2Recall that the Bayes classifier assigns an observation to the class for which pk(x)
is largest. This is different from Bayes’ theorem in (4.15), which allows us to manipulate
conditional distributions.
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FIGURE 4.4. Left: Two one-dimensional normal density functions are shown.
The dashed vertical line represents the Bayes decision boundary. Right: 20 obser-
vations were drawn from each of the two classes, and are shown as histograms.
The Bayes decision boundary is again shown as a dashed vertical line. The solid
vertical line represents the LDA decision boundary estimated from the training
data.

X = x to the class for which (4.17) is largest. Taking the log of (4.17) and
rearranging the terms, it is not hard to show3 that this is equivalent to
assigning the observation to the class for which

δk(x) = x · µk

σ2
− µ2

k

2σ2
+ log(πk) (4.18)

is largest. For instance, if K = 2 and π1 = π2, then the Bayes classifier
assigns an observation to class 1 if 2x (µ1 − µ2) > µ2

1 − µ2
2, and to class

2 otherwise. The Bayes decision boundary is the point for which δ1(x) =
δ2(x); one can show that this amounts to

x =
µ2
1 − µ2

2

2(µ1 − µ2)
=

µ1 + µ2

2
. (4.19)

An example is shown in the left-hand panel of Figure 4.4. The two normal
density functions that are displayed, f1(x) and f2(x), represent two distinct
classes. The mean and variance parameters for the two density functions
are µ1 = −1.25, µ2 = 1.25, and σ2

1 = σ2
2 = 1. The two densities overlap,

and so given that X = x, there is some uncertainty about the class to which
the observation belongs. If we assume that an observation is equally likely
to come from either class—that is, π1 = π2 = 0.5—then by inspection of
(4.19), we see that the Bayes classifier assigns the observation to class 1
if x < 0 and class 2 otherwise. Note that in this case, we can compute
the Bayes classifier because we know that X is drawn from a Gaussian
distribution within each class, and we know all of the parameters involved.
In a real-life situation, we are not able to calculate the Bayes classifier.

In practice, even if we are quite certain of our assumption that X is
drawn from a Gaussian distribution within each class, to apply the Bayes
classifier we still have to estimate the parameters µ1, . . . , µK , π1, . . . ,πK ,
and σ2. The linear discriminant analysis (LDA) method approximates the linear

discriminant
analysis

Bayes classifier by plugging estimates for πk, µk, and σ2 into (4.18). In

3See Exercise 2 at the end of this chapter.
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particular, the following estimates are used:

µ̂k =
1

nk

∑

i:yi=k

xi

σ̂2 =
1

n−K

K∑

k=1

∑

i:yi=k

(xi − µ̂k)
2 (4.20)

where n is the total number of training observations, and nk is the number
of training observations in the kth class. The estimate for µk is simply the
average of all the training observations from the kth class, while σ̂2 can
be seen as a weighted average of the sample variances for each of the K
classes. Sometimes we have knowledge of the class membership probabili-
ties π1, . . . ,πK , which can be used directly. In the absence of any additional
information, LDA estimates πk using the proportion of the training obser-
vations that belong to the kth class. In other words,

π̂k = nk/n. (4.21)
The LDA classifier plugs the estimates given in (4.20) and (4.21) into (4.18),
and assigns an observation X = x to the class for which

δ̂k(x) = x · µ̂k

σ̂2
− µ̂2

k

2σ̂2
+ log(π̂k) (4.22)

is largest. The word linear in the classifier’s name stems from the fact
that the discriminant functions δ̂k(x) in (4.22) are linear functions of x (as discriminant

functionopposed to a more complex function of x).
The right-hand panel of Figure 4.4 displays a histogram of a random

sample of 20 observations from each class. To implement LDA, we began
by estimating πk, µk, and σ2 using (4.20) and (4.21). We then computed the
decision boundary, shown as a black solid line, that results from assigning
an observation to the class for which (4.22) is largest. All points to the left
of this line will be assigned to the green class, while points to the right of
this line are assigned to the purple class. In this case, since n1 = n2 = 20,
we have π̂1 = π̂2. As a result, the decision boundary corresponds to the
midpoint between the sample means for the two classes, (µ̂1 + µ̂2)/2. The
figure indicates that the LDA decision boundary is slightly to the left of
the optimal Bayes decision boundary, which instead equals (µ1 + µ2)/2 =
0. How well does the LDA classifier perform on this data? Since this is
simulated data, we can generate a large number of test observations in order
to compute the Bayes error rate and the LDA test error rate. These are
10.6% and 11.1%, respectively. In other words, the LDA classifier’s error
rate is only 0.5% above the smallest possible error rate! This indicates that
LDA is performing pretty well on this data set.

To reiterate, the LDA classifier results from assuming that the obser-
vations within each class come from a normal distribution with a class-
specific mean and a common variance σ2, and plugging estimates for these
parameters into the Bayes classifier. In Section 4.4.3, we will consider a less
stringent set of assumptions, by allowing the observations in the kth class
to have a class-specific variance, σ2

k.
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FIGURE 4.5. Two multivariate Gaussian density functions are shown, with
p = 2. Left: The two predictors are uncorrelated. Right: The two variables have
a correlation of 0.7.

4.4.2 Linear Discriminant Analysis for p >1
We now extend the LDA classifier to the case of multiple predictors. To
do this, we will assume that X = (X1, X2, . . . , Xp) is drawn from a multi-
variate Gaussian (or multivariate normal) distribution, with a class-specific multivariate

Gaussianmean vector and a common covariance matrix. We begin with a brief review
of this distribution.

The multivariate Gaussian distribution assumes that each individual pre-
dictor follows a one-dimensional normal distribution, as in (4.16), with some
correlation between each pair of predictors. Two examples of multivariate
Gaussian distributions with p = 2 are shown in Figure 4.5. The height of
the surface at any particular point represents the probability that both X1

and X2 fall in a small region around that point. In either panel, if the sur-
face is cut along the X1 axis or along the X2 axis, the resulting cross-section
will have the shape of a one-dimensional normal distribution. The left-hand
panel of Figure 4.5 illustrates an example in which Var(X1) = Var(X2) and
Cor(X1, X2) = 0; this surface has a characteristic bell shape. However, the
bell shape will be distorted if the predictors are correlated or have unequal
variances, as is illustrated in the right-hand panel of Figure 4.5. In this
situation, the base of the bell will have an elliptical, rather than circular,
shape. To indicate that a p-dimensional random variable X has a multi-
variate Gaussian distribution, we write X ∼ N(µ,Σ). Here E(X) = µ is
the mean of X (a vector with p components), and Cov(X) = Σ is the
p× p covariance matrix of X. Formally, the multivariate Gaussian density
is defined as

f(x) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
. (4.23)

In the case of p > 1 predictors, the LDA classifier assumes that the
observations in the kth class are drawn from a multivariate Gaussian dis-
tribution N(µk,Σ), where µk is a class-specific mean vector, and Σ is a
covariance matrix that is common to all K classes. Plugging the density
function for the kth class, fk(X = x), into (4.15) and performing a little
bit of algebra reveals that the Bayes classifier assigns an observation X = x
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FIGURE 4.6. An example with three classes. The observations from each class
are drawn from a multivariate Gaussian distribution with p = 2, with a class-spe-
cific mean vector and a common covariance matrix. Left: Ellipses that contain
95% of the probability for each of the three classes are shown. The dashed lines
are the Bayes decision boundaries. Right: 20 observations were generated from
each class, and the corresponding LDA decision boundaries are indicated using
solid black lines. The Bayes decision boundaries are once again shown as dashed
lines.

to the class for which

δk(x) = xTΣ−1µk −
1

2
µT
kΣ

−1µk + log πk (4.24)

is largest. This is the vector/matrix version of (4.18).
An example is shown in the left-hand panel of Figure 4.6. Three equally-

sized Gaussian classes are shown with class-specific mean vectors and a
common covariance matrix. The three ellipses represent regions that con-
tain 95% of the probability for each of the three classes. The dashed lines
are the Bayes decision boundaries. In other words, they represent the set
of values x for which δk(x) = δ$(x); i.e.

xTΣ−1µk −
1

2
µT
kΣ

−1µk = xTΣ−1µl −
1

2
µT
l Σ

−1µl (4.25)

for k )= l. (The log πk term from (4.24) has disappeared because each of
the three classes has the same number of training observations; i.e. πk is
the same for each class.) Note that there are three lines representing the
Bayes decision boundaries because there are three pairs of classes among
the three classes. That is, one Bayes decision boundary separates class 1
from class 2, one separates class 1 from class 3, and one separates class 2
from class 3. These three Bayes decision boundaries divide the predictor
space into three regions. The Bayes classifier will classify an observation
according to the region in which it is located.

Once again, we need to estimate the unknown parameters µ1, . . . , µK ,
π1, . . . ,πK , and Σ; the formulas are similar to those used in the one-
dimensional case, given in (4.20). To assign a new observation X = x,
LDA plugs these estimates into (4.24) to obtain quantities δ̂k(x), and clas-
sifies to the class for which δ̂k(x) is largest. Note that in (4.24) δk(x) is
a linear function of x; that is, the LDA decision rule depends on x only
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True default status
No Yes Total

Predicted No 9644 252 9896
default status Yes 23 81 104

Total 9667 333 10000

TABLE 4.4. A confusion matrix compares the LDA predictions to the true
default statuses for the 10,000 training observations in the Default data set.
Elements on the diagonal of the matrix represent individuals whose default statuses
were correctly predicted, while off-diagonal elements represent individuals that
were misclassified. LDA made incorrect predictions for 23 individuals who did
not default and for 252 individuals who did default.

through a linear combination of its elements. As previously discussed, this
is the reason for the word linear in LDA.

In the right-hand panel of Figure 4.6, 20 observations drawn from each of
the three classes are displayed, and the resulting LDA decision boundaries
are shown as solid black lines. Overall, the LDA decision boundaries are
pretty close to the Bayes decision boundaries, shown again as dashed lines.
The test error rates for the Bayes and LDA classifiers are 0.0746 and 0.0770,
respectively. This indicates that LDA is performing well on this data.

We can perform LDA on the Default data in order to predict whether
or not an individual will default on the basis of credit card balance and
student status.4 The LDA model fit to the 10,000 training samples results
in a training error rate of 2.75%. This sounds like a low error rate, but two
caveats must be noted.

• First of all, training error rates will usually be lower than test error
rates, which are the real quantity of interest. In other words, we
might expect this classifier to perform worse if we use it to predict
whether or not a new set of individuals will default. The reason is
that we specifically adjust the parameters of our model to do well on
the training data. The higher the ratio of parameters p to number
of samples n, the more we expect this overfitting to play a role. For overfittingthese data we don’t expect this to be a problem, since p = 2 and
n = 10, 000.

• Second, since only 3.33% of the individuals in the training sample
defaulted, a simple but useless classifier that always predicts that
an individual will not default, regardless of his or her credit card
balance and student status, will result in an error rate of 3.33%. In
other words, the trivial null classifier will achieve an error rate that nullis only a bit higher than the LDA training set error rate.

In practice, a binary classifier such as this one can make two types of
errors: it can incorrectly assign an individual who defaults to the no default
category, or it can incorrectly assign an individual who does not default to

4The careful reader will notice that student status is qualitative — thus, the normality
assumption made by LDA is clearly violated in this example! However, LDA is often
remarkably robust to model violations, as this example shows. Naive Bayes, discussed in
Section 4.4.4, provides an alternative to LDA that does not assume normally distributed
predictors.
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the default category. It is often of interest to determine which of these two
types of errors are being made. A confusion matrix, shown for the Default confusion

matrixdata in Table 4.4, is a convenient way to display this information. The
table reveals that LDA predicted that a total of 104 people would default.
Of these people, 81 actually defaulted and 23 did not. Hence only 23 out
of 9,667 of the individuals who did not default were incorrectly labeled.
This looks like a pretty low error rate! However, of the 333 individuals who
defaulted, 252 (or 75.7%) were missed by LDA. So while the overall error
rate is low, the error rate among individuals who defaulted is very high.
From the perspective of a credit card company that is trying to identify
high-risk individuals, an error rate of 252/333 = 75.7% among individuals
who default may well be unacceptable.

Class-specific performance is also important in medicine and biology,
where the terms sensitivity and specificity characterize the performance of sensitivity

specificitya classifier or screening test. In this case the sensitivity is the percent-
age of true defaulters that are identified; it equals 24.3 %. The specificity
is the percentage of non-defaulters that are correctly identified; it equals
(1− 23/9667) = 99.8%.

Why does LDA do such a poor job of classifying the customers who de-
fault? In other words, why does it have such low sensitivity? As we have
seen, LDA is trying to approximate the Bayes classifier, which has the low-
est total error rate out of all classifiers. That is, the Bayes classifier will
yield the smallest possible total number of misclassified observations, re-
gardless of the class from which the errors stem. Some misclassifications will
result from incorrectly assigning a customer who does not default to the
default class, and others will result from incorrectly assigning a customer
who defaults to the non-default class. In contrast, a credit card company
might particularly wish to avoid incorrectly classifying an individual who
will default, whereas incorrectly classifying an individual who will not de-
fault, though still to be avoided, is less problematic. We will now see that it
is possible to modify LDA in order to develop a classifier that better meets
the credit card company’s needs.

The Bayes classifier works by assigning an observation to the class for
which the posterior probability pk(X) is greatest. In the two-class case, this
amounts to assigning an observation to the default class if

Pr(default = Yes|X = x) > 0.5. (4.26)
Thus, the Bayes classifier, and by extension LDA, uses a threshold of 50%
for the posterior probability of default in order to assign an observation
to the default class. However, if we are concerned about incorrectly pre-
dicting the default status for individuals who default, then we can consider
lowering this threshold. For instance, we might label any customer with a
posterior probability of default above 20% to the default class. In other
words, instead of assigning an observation to the default class if (4.26)
holds, we could instead assign an observation to this class if

Pr(default = Yes|X = x) > 0.2. (4.27)
The error rates that result from taking this approach are shown in Table 4.5.
Now LDA predicts that 430 individuals will default. Of the 333 individuals
who default, LDA correctly predicts all but 138, or 41.4%. This is a vast
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True default status
No Yes Total

Predicted No 9432 138 9570
default status Yes 235 195 430

Total 9667 333 10000

TABLE 4.5. A confusion matrix compares the LDA predictions to the true
default statuses for the 10,000 training observations in the Default data set,
using a modified threshold value that predicts default for any individuals whose
posterior default probability exceeds 20%.
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FIGURE 4.7. For the Default data set, error rates are shown as a function of
the threshold value for the posterior probability that is used to perform the assign-
ment. The black solid line displays the overall error rate. The blue dashed line
represents the fraction of defaulting customers that are incorrectly classified, and
the orange dotted line indicates the fraction of errors among the non-defaulting
customers.

improvement over the error rate of 75.7% that resulted from using the
threshold of 50%. However, this improvement comes at a cost: now 235
individuals who do not default are incorrectly classified. As a result, the
overall error rate has increased slightly to 3.73%. But a credit card company
may consider this slight increase in the total error rate to be a small price to
pay for more accurate identification of individuals who do indeed default.

Figure 4.7 illustrates the trade-off that results from modifying the thresh-
old value for the posterior probability of default. Various error rates are
shown as a function of the threshold value. Using a threshold of 0.5, as in
(4.26), minimizes the overall error rate, shown as a black solid line. This
is to be expected, since the Bayes classifier uses a threshold of 0.5 and is
known to have the lowest overall error rate. But when a threshold of 0.5 is
used, the error rate among the individuals who default is quite high (blue
dashed line). As the threshold is reduced, the error rate among individuals
who default decreases steadily, but the error rate among the individuals
who do not default increases. How can we decide which threshold value is
best? Such a decision must be based on domain knowledge, such as detailed
information about the costs associated with default.

The ROC curve is a popular graphic for simultaneously displaying the ROC curvetwo types of errors for all possible thresholds. The name “ROC” is historic,
and comes from communications theory. It is an acronym for receiver op-
erating characteristics. Figure 4.8 displays the ROC curve for the LDA
classifier on the training data. The overall performance of a classifier, sum-
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FIGURE 4.8. A ROC curve for the LDA classifier on the Default data. It
traces out two types of error as we vary the threshold value for the posterior
probability of default. The actual thresholds are not shown. The true positive rate
is the sensitivity: the fraction of defaulters that are correctly identified, using
a given threshold value. The false positive rate is 1-specificity: the fraction of
non-defaulters that we classify incorrectly as defaulters, using that same threshold
value. The ideal ROC curve hugs the top left corner, indicating a high true positive
rate and a low false positive rate. The dotted line represents the “no information”
classifier; this is what we would expect if student status and credit card balance
are not associated with probability of default.

marized over all possible thresholds, is given by the area under the (ROC)
curve (AUC). An ideal ROC curve will hug the top left corner, so the larger area under

the (ROC)
curve

the AUC the better the classifier. For this data the AUC is 0.95, which is
close to the maximum of 1.0, so would be considered very good. We expect
a classifier that performs no better than chance to have an AUC of 0.5
(when evaluated on an independent test set not used in model training).
ROC curves are useful for comparing different classifiers, since they take
into account all possible thresholds. It turns out that the ROC curve for
the logistic regression model of Section 4.3.4 fit to these data is virtually
indistinguishable from this one for the LDA model, so we do not display it
here.

As we have seen above, varying the classifier threshold changes its true
positive and false positive rate. These are also called the sensitivity and one sensitivityminus the specificity of our classifier. Since there is an almost bewildering specificityarray of terms used in this context, we now give a summary. Table 4.6
shows the possible results when applying a classifier (or diagnostic test)
to a population. To make the connection with the epidemiology literature,
we think of “+” as the “disease” that we are trying to detect, and “−” as
the “non-disease” state. To make the connection to the classical hypothesis
testing literature, we think of “−” as the null hypothesis and “+” as the
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True class
− or Null + or Non-null Total

Predicted − or Null True Neg. (TN) False Neg. (FN) N∗

class + or Non-null False Pos. (FP) True Pos. (TP) P∗

Total N P

TABLE 4.6. Possible results when applying a classifier or diagnostic test to a
population.

Name Definition Synonyms
False Pos. rate FP/N Type I error, 1−Specificity
True Pos. rate TP/P 1−Type II error, power, sensitivity, recall
Pos. Pred. value TP/P∗ Precision, 1−false discovery proportion
Neg. Pred. value TN/N∗

TABLE 4.7. Important measures for classification and diagnostic testing, derived
from quantities in Table 4.6.

alternative (non-null) hypothesis. In the context of the Default data, “+”
indicates an individual who defaults, and “−” indicates one who does not.

Table 4.7 lists many of the popular performance measures that are used in
this context. The denominators for the false positive and true positive rates
are the actual population counts in each class. In contrast, the denominators
for the positive predictive value and the negative predictive value are the
total predicted counts for each class.

4.4.3 Quadratic Discriminant Analysis
As we have discussed, LDA assumes that the observations within each class
are drawn from a multivariate Gaussian distribution with a class-specific
mean vector and a covariance matrix that is common to all K classes.
Quadratic discriminant analysis (QDA) provides an alternative approach. quadratic

discriminant
analysis

Like LDA, the QDA classifier results from assuming that the observations
from each class are drawn from a Gaussian distribution, and plugging es-
timates for the parameters into Bayes’ theorem in order to perform pre-
diction. However, unlike LDA, QDA assumes that each class has its own
covariance matrix. That is, it assumes that an observation from the kth
class is of the form X ∼ N(µk,Σk), where Σk is a covariance matrix for
the kth class. Under this assumption, the Bayes classifier assigns an obser-
vation X = x to the class for which

δk(x) = −1

2
(x− µk)

TΣ−1
k (x− µk)−

1

2
log |Σk|+ log πk

= −1

2
xTΣ−1

k x+ xTΣ−1
k µk −

1

2
µT
kΣ

−1
k µk −

1

2
log |Σk|+ log πk

(4.28)
is largest. So the QDA classifier involves plugging estimates for Σk, µk,
and πk into (4.28), and then assigning an observation X = x to the class
for which this quantity is largest. Unlike in (4.24), the quantity x appears
as a quadratic function in (4.28). This is where QDA gets its name.

Why does it matter whether or not we assume that the K classes share a
common covariance matrix? In other words, why would one prefer LDA to
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FIGURE 4.9. Left: The Bayes (purple dashed), LDA (black dotted), and QDA
(green solid) decision boundaries for a two-class problem with Σ1 = Σ2. The
shading indicates the QDA decision rule. Since the Bayes decision boundary is
linear, it is more accurately approximated by LDA than by QDA. Right: Details
are as given in the left-hand panel, except that Σ1 "= Σ2. Since the Bayes decision
boundary is non-linear, it is more accurately approximated by QDA than by LDA.

QDA, or vice-versa? The answer lies in the bias-variance trade-off. When
there are p predictors, then estimating a covariance matrix requires esti-
mating p(p+1)/2 parameters. QDA estimates a separate covariance matrix
for each class, for a total of Kp(p+1)/2 parameters. With 50 predictors this
is some multiple of 1,275, which is a lot of parameters. By instead assum-
ing that the K classes share a common covariance matrix, the LDA model
becomes linear in x, which means there are Kp linear coefficients to esti-
mate. Consequently, LDA is a much less flexible classifier than QDA, and
so has substantially lower variance. This can potentially lead to improved
prediction performance. But there is a trade-off: if LDA’s assumption that
the K classes share a common covariance matrix is badly off, then LDA
can suffer from high bias. Roughly speaking, LDA tends to be a better bet
than QDA if there are relatively few training observations and so reducing
variance is crucial. In contrast, QDA is recommended if the training set is
very large, so that the variance of the classifier is not a major concern, or if
the assumption of a common covariance matrix for the K classes is clearly
untenable.

Figure 4.9 illustrates the performances of LDA and QDA in two scenarios.
In the left-hand panel, the two Gaussian classes have a common correla-
tion of 0.7 between X1 and X2. As a result, the Bayes decision boundary
is linear and is accurately approximated by the LDA decision boundary.
The QDA decision boundary is inferior, because it suffers from higher vari-
ance without a corresponding decrease in bias. In contrast, the right-hand
panel displays a situation in which the orange class has a correlation of 0.7
between the variables and the blue class has a correlation of −0.7. Now
the Bayes decision boundary is quadratic, and so QDA more accurately
approximates this boundary than does LDA.
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4.4.4 Naive Bayes
In previous sections, we used Bayes’ theorem (4.15) to develop the LDA
and QDA classifiers. Here, we use Bayes’ theorem to motivate the popular
naive Bayes classifier. naive BayesRecall that Bayes’ theorem (4.15) provides an expression for the pos-
terior probability pk(x) = Pr(Y = k|X = x) in terms of π1, . . . ,πK and
f1(x), . . . , fK(x). To use (4.15) in practice, we need estimates for π1, . . . ,πK

and f1(x), . . . , fK(x). As we saw in previous sections, estimating the prior
probabilities π1, . . . ,πK is typically straightforward: for instance, we can
estimate π̂k as the proportion of training observations belonging to the kth
class, for k = 1, . . . ,K.

However, estimating f1(x), . . . , fK(x) is more subtle. Recall that fk(x)
is the p-dimensional density function for an observation in the kth class,
for k = 1, . . . ,K. In general, estimating a p-dimensional density function is
challenging. In LDA, we make a very strong assumption that greatly sim-
plifies the task: we assume that fk is the density function for a multivariate
normal random variable with class-specific mean µk, and shared covariance
matrix Σ. By contrast, in QDA, we assume that fk is the density function
for a multivariate normal random variable with class-specific mean µk, and
class-specific covariance matrix Σk. By making these very strong assump-
tions, we are able to replace the very challenging problem of estimating K
p-dimensional density functions with the much simpler problem of estimat-
ing K p-dimensional mean vectors and one (in the case of LDA) or K (in
the case of QDA) (p× p)-dimensional covariance matrices.

The naive Bayes classifier takes a different tack for estimating f1(x), . . . ,
fK(x). Instead of assuming that these functions belong to a particular
family of distributions (e.g. multivariate normal), we instead make a single
assumption:

Within the kth class, the p predictors are independent.
Stated mathematically, this assumption means that for k = 1, . . . ,K,

fk(x) = fk1(x1)× fk2(x2)× · · ·× fkp(xp), (4.29)
where fkj is the density function of the jth predictor among observations
in the kth class.

Why is this assumption so powerful? Essentially, estimating a p-dimen-
sional density function is challenging because we must consider not only
the marginal distribution of each predictor — that is, the distribution of marginal

distributioneach predictor on its own — but also the joint distribution of the predictors
joint
distribution

— that is, the association between the different predictors. In the case of
a multivariate normal distribution, the association between the different
predictors is summarized by the off-diagonal elements of the covariance
matrix. However, in general, this association can be very hard to charac-
terize, and exceedingly challenging to estimate. But by assuming that the
p covariates are independent within each class, we completely eliminate the
need to worry about the association between the p predictors, because we
have simply assumed that there is no association between the predictors!

Do we really believe the naive Bayes assumption that the p covariates
are independent within each class? In most settings, we do not. But even
though this modeling assumption is made for convenience, it often leads to
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pretty decent results, especially in settings where n is not large enough rela-
tive to p for us to effectively estimate the joint distribution of the predictors
within each class. In fact, since estimating a joint distribution requires such
a huge amount of data, naive Bayes is a good choice in a wide range of set-
tings. Essentially, the naive Bayes assumption introduces some bias, but
reduces variance, leading to a classifier that works quite well in practice as
a result of the bias-variance trade-off.

Once we have made the naive Bayes assumption, we can plug (4.29) into
(4.15) to obtain an expression for the posterior probability,

Pr(Y = k|X = x) =
πk × fk1(x1)× fk2(x2)× · · ·× fkp(xp)∑K
l=1 πl × fl1(x1)× fl2(x2)× · · ·× flp(xp)

(4.30)

for k = 1, . . . ,K.
To estimate the one-dimensional density function fkj using training data

x1j , . . . , xnj , we have a few options.

• If Xj is quantitative, then we can assume that Xj |Y = k ∼ N(µjk,σ2
jk).

In other words, we assume that within each class, the jth predictor is
drawn from a (univariate) normal distribution. While this may sound
a bit like QDA, there is one key difference, in that here we are assum-
ing that the predictors are independent; this amounts to QDA with
an additional assumption that the class-specific covariance matrix is
diagonal.

• If Xj is quantitative, then another option is to use a non-parametric
estimate for fkj . A very simple way to do this is by making a his-
togram for the observations of the jth predictor within each class.
Then we can estimate fkj(xj) as the fraction of the training obser-
vations in the kth class that belong to the same histogram bin as
xj . Alternatively, we can use a kernel density estimator, which is kernel

density
estimator

essentially a smoothed version of a histogram.

• If Xj is qualitative, then we can simply count the proportion of train-
ing observations for the jth predictor corresponding to each class. For
instance, suppose that Xj ∈ {1, 2, 3}, and we have 100 observations
in the kth class. Suppose that the jth predictor takes on values of 1,
2, and 3 in 32, 55, and 13 of those observations, respectively. Then
we can estimate fkj as

f̂kj(xj) =






0.32 if xj = 1

0.55 if xj = 2

0.13 if xj = 3.

We now consider the naive Bayes classifier in a toy example with p = 3
predictors and K = 2 classes. The first two predictors are quantitative,
and the third predictor is qualitative with three levels. Suppose further
that π̂1 = π̂2 = 0.5. The estimated density functions f̂kj for k = 1, 2
and j = 1, 2, 3 are displayed in Figure 4.10. Now suppose that we wish
to classify a new observation, x∗ = (0.4, 1.5, 1)T . It turns out that in this
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FIGURE 4.10. In the toy example in Section 4.4.4, we generate data with p = 3
predictors and K = 2 classes. The first two predictors are quantitative, and the
third predictor is qualitative with three levels. In each class, the estimated density
for each of the three predictors is displayed. If the prior probabilities for the two
classes are equal, then the observation x∗ = (0.4, 1.5, 1)T has a 94.4% posterior
probability of belonging to the first class.

True default status
No Yes Total

Predicted No 9621 244 9865
default status Yes 46 89 135

Total 9667 333 10000

TABLE 4.8. Comparison of the naive Bayes predictions to the true default
status for the 10, 000 training observations in the Default data set, when we
predict default for any observation for which P (Y = default|X = x) > 0.5.

example, f̂11(0.4) = 0.368, f̂12(1.5) = 0.484, f̂13(1) = 0.226, and f̂21(0.4) =
0.030, f̂22(1.5) = 0.130, f̂23(1) = 0.616. Plugging these estimates into (4.30)
results in posterior probability estimates of Pr(Y = 1|X = x∗) = 0.944 and
Pr(Y = 2|X = x∗) = 0.056.

Table 4.8 provides the confusion matrix resulting from applying the naive
Bayes classifier to the Default data set, where we predict a default if the
posterior probability of a default — that is, P (Y = default|X = x) — ex-
ceeds 0.5. Comparing this to the results for LDA in Table 4.4, our findings
are mixed. While LDA has a slightly lower overall error rate, naive Bayes
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True default status
No Yes Total

Predicted No 9339 130 9469
default status Yes 328 203 531

Total 9667 333 10000

TABLE 4.9. Comparison of the naive Bayes predictions to the true default
status for the 10, 000 training observations in the Default data set, when we
predict default for any observation for which P (Y = default|X = x) > 0.2.

correctly predicts a higher fraction of the true defaulters. In this implemen-
tation of naive Bayes, we have assumed that each quantitative predictor is
drawn from a Gaussian distribution (and, of course, that within each class,
each predictor is independent).

Just as with LDA, we can easily adjust the probability threshold for
predicting a default. For example, Table 4.9 provides the confusion matrix
resulting from predicting a default if P (Y = default|X = x) > 0.2. Again,
the results are mixed relative to LDA with the same threshold (Table 4.5).
Naive Bayes has a higher error rate, but correctly predicts almost two-thirds
of the true defaults.

In this example, it should not be too surprising that naive Bayes does
not convincingly outperform LDA: this data set has n = 10,000 and p = 2,
and so the reduction in variance resulting from the naive Bayes assumption
is not necessarily worthwhile. We expect to see a greater pay-off to using
naive Bayes relative to LDA or QDA in instances where p is larger or n is
smaller, so that reducing the variance is very important.

4.5 A Comparison of Classification Methods
4.5.1 An Analytical Comparison
We now perform an analytical (or mathematical) comparison of LDA, QDA,
naive Bayes, and logistic regression. We consider these approaches in a
setting with K classes, so that we assign an observation to the class that
maximizes Pr(Y = k|X = x). Equivalently, we can set K as the baseline
class and assign an observation to the class that maximizes

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
(4.31)

for k = 1, . . . ,K. Examining the specific form of (4.31) for each method
provides a clear understanding of their similarities and differences.

First, for LDA, we can make use of Bayes’ theorem (4.15) as well as
the assumption that the predictors within each class are drawn from a
multivariate normal density (4.23) with class-specific mean and shared co-
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variance matrix in order to show that

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= log

(
πkfk(x)

πKfK(x)

)

= log

(
πk exp

(
− 1

2 (x− µk)TΣ
−1(x− µk)

)

πK exp
(
− 1

2 (x− µK)TΣ−1(x− µK)
)
)

= log

(
πk

πK

)
− 1

2
(x− µk)

TΣ−1(x− µk)

+
1

2
(x− µK)TΣ−1(x− µK)

= log

(
πk

πK

)
− 1

2
(µk + µK)TΣ−1(µk − µK)

+ xTΣ−1(µk − µK)

= ak +
p∑

j=1

bkjxj , (4.32)

where ak = log
(

πk
πK

)
− 1

2 (µk + µK)TΣ−1(µk − µK) and bkj is the jth
component of Σ−1(µk − µK). Hence LDA, like logistic regression, assumes
that the log odds of the posterior probabilities is linear in x.

Using similar calculations, in the QDA setting (4.31) becomes

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= ak +

p∑

j=1

bkjxj +
p∑

j=1

p∑

l=1

ckjlxjxl, (4.33)

where ak, bkj , and ckjl are functions of πk,πK , µk, µK ,Σk and ΣK . Again,
as the name suggests, QDA assumes that the log odds of the posterior
probabilities is quadratic in x.

Finally, we examine (4.31) in the naive Bayes setting. Recall that in
this setting, fk(x) is modeled as a product of p one-dimensional functions
fkj(xj) for j = 1, . . . , p. Hence,

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= log

(
πkfk(x)

πKfK(x)

)

= log

(
πk
∏p

j=1 fkj(xj)

πK
∏p

j=1 fKj(xj)

)

= log

(
πk

πK

)
+

p∑

j=1

log

(
fkj(xj)

fKj(xj)

)

= ak +
p∑

j=1

gkj(xj), (4.34)

where ak = log
(

πk
πK

)
and gkj(xj) = log

(
fkj(xj)
fKj(xj)

)
. Hence, the right-hand

side of (4.34) takes the form of a generalized additive model, a topic that is
discussed further in Chapter 7.
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Inspection of (4.32), (4.33), and (4.34) yields the following observations
about LDA, QDA, and naive Bayes:

• LDA is a special case of QDA with ckjl = 0 for all j = 1, . . . , p,
l = 1, . . . , p, and k = 1, . . . ,K. (Of course, this is not surprising, since
LDA is simply a restricted version of QDA with Σ1 = · · · = ΣK = Σ.)

• Any classifier with a linear decision boundary is a special case of naive
Bayes with gkj(xj) = bkjxj . In particular, this means that LDA is
a special case of naive Bayes! This is not at all obvious from the
descriptions of LDA and naive Bayes earlier in this chapter, since
each method makes very different assumptions: LDA assumes that
the features are normally distributed with a common within-class
covariance matrix, and naive Bayes instead assumes independence of
the features.

• If we model fkj(xj) in the naive Bayes classifier using a one-dimensio-
nal Gaussian distribution N(µkj ,σ2

j ), then we end up with gkj(xj) =
bkjxj where bkj = (µkj−µKj)/σ2

j . In this case, naive Bayes is actually
a special case of LDA with Σ restricted to be a diagonal matrix with
jth diagonal element equal to σ2

j .

• Neither QDA nor naive Bayes is a special case of the other. Naive
Bayes can produce a more flexible fit, since any choice can be made
for gkj(xj). However, it is restricted to a purely additive fit, in the
sense that in (4.34), a function of xj is added to a function of xl, for
j )= l; however, these terms are never multiplied. By contrast, QDA
includes multiplicative terms of the form ckjlxjxl. Therefore, QDA
has the potential to be more accurate in settings where interactions
among the predictors are important in discriminating between classes.

None of these methods uniformly dominates the others: in any setting, the
choice of method will depend on the true distribution of the predictors in
each of the K classes, as well as other considerations, such as the values of
n and p. The latter ties into the bias-variance trade-off.

How does logistic regression tie into this story? Recall from (4.12) that
multinomial logistic regression takes the form

log

(
Pr(Y = k|X = x)

Pr(Y = K|X = x)

)
= βk0 +

p∑

j=1

βkjxj .

This is identical to the linear form of LDA (4.32): in both cases,
log
(

Pr(Y=k|X=x)
Pr(Y=K|X=x)

)
is a linear function of the predictors. In LDA, the co-

efficients in this linear function are functions of estimates for πk, πK , µk,
µK , and Σ obtained by assuming that X1, . . . , Xp follow a normal distri-
bution within each class. By contrast, in logistic regression, the coefficients
are chosen to maximize the likelihood function (4.5). Thus, we expect LDA
to outperform logistic regression when the normality assumption (approxi-
mately) holds, and we expect logistic regression to perform better when it
does not.
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We close with a brief discussion of K-nearest neighbors (KNN), intro-
duced in Chapter 2. Recall that KNN takes a completely different approach
from the classifiers seen in this chapter. In order to make a prediction for
an observation X = x, the training observations that are closest to x are
identified. Then X is assigned to the class to which the plurality of these
observations belong. Hence KNN is a completely non-parametric approach:
no assumptions are made about the shape of the decision boundary. We
make the following observations about KNN:

• Because KNN is completely non-parametric, we can expect this ap-
proach to dominate LDA and logistic regression when the decision
boundary is highly non-linear, provided that n is very large and p is
small.

• In order to provide accurate classification, KNN requires a lot of ob-
servations relative to the number of predictors—that is, n much larger
than p. This has to do with the fact that KNN is non-parametric, and
thus tends to reduce the bias while incurring a lot of variance.

• In settings where the decision boundary is non-linear but n is only
modest, or p is not very small, then QDA may be preferred to KNN.
This is because QDA can provide a non-linear decision boundary
while taking advantage of a parametric form, which means that it
requires a smaller sample size for accurate classification, relative to
KNN.

• Unlike logistic regression, KNN does not tell us which predictors are
important: we don’t get a table of coefficients as in Table 4.3.

4.5.2 An Empirical Comparison
We now compare the empirical (practical) performance of logistic regres-
sion, LDA, QDA, naive Bayes, and KNN. We generated data from six dif-
ferent scenarios, each of which involves a binary (two-class) classification
problem. In three of the scenarios, the Bayes decision boundary is linear,
and in the remaining scenarios it is non-linear. For each scenario, we pro-
duced 100 random training data sets. On each of these training sets, we
fit each method to the data and computed the resulting test error rate on
a large test set. Results for the linear scenarios are shown in Figure 4.11,
and the results for the non-linear scenarios are in Figure 4.12. The KNN
method requires selection of K, the number of neighbors (not to be con-
fused with the number of classes in earlier sections of this chapter). We
performed KNN with two values of K: K = 1, and a value of K that was
chosen automatically using an approach called cross-validation, which we
discuss further in Chapter 5. We applied naive Bayes assuming univariate
Gaussian densities for the features within each class (and, of course — since
this is the key characteristic of naive Bayes — assuming independence of
the features).

In each of the six scenarios, there were p = 2 quantitative predictors.
The scenarios were as follows:
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FIGURE 4.11. Boxplots of the test error rates for each of the linear scenarios
described in the main text.

Scenario 1: There were 20 training observations in each of two classes. The
observations within each class were uncorrelated random normal variables
with a different mean in each class. The left-hand panel of Figure 4.11 shows
that LDA performed well in this setting, as one would expect since this is
the model assumed by LDA. Logistic regression also performed quite well,
since it assumes a linear decision boundary. KNN performed poorly because
it paid a price in terms of variance that was not offset by a reduction in bias.
QDA also performed worse than LDA, since it fit a more flexible classifier
than necessary. The performance of naive Bayes was slightly better than
QDA, because the naive Bayes assumption of independent predictors is
correct.
Scenario 2: Details are as in Scenario 1, except that within each class, the
two predictors had a correlation of −0.5. The center panel of Figure 4.11
indicates that the performance of most methods is similar to the previ-
ous scenario. The notable exception is naive Bayes, which performs very
poorly here, since the naive Bayes assumption of independent predictors is
violated.
Scenario 3: As in the previous scenario, there is substantial negative cor-
relation between the predictors within each class. However, this time we
generated X1 and X2 from the t-distribution, with 50 observations per class.

t-
distributionThe t-distribution has a similar shape to the normal distribution, but it

has a tendency to yield more extreme points—that is, more points that are
far from the mean. In this setting, the decision boundary was still linear,
and so fit into the logistic regression framework. The set-up violated the
assumptions of LDA, since the observations were not drawn from a normal
distribution. The right-hand panel of Figure 4.11 shows that logistic regres-
sion outperformed LDA, though both methods were superior to the other
approaches. In particular, the QDA results deteriorated considerably as a
consequence of non-normality. Naive Bayes performed very poorly because
the independence assumption is violated.
Scenario 4: The data were generated from a normal distribution, with a
correlation of 0.5 between the predictors in the first class, and correlation of
−0.5 between the predictors in the second class. This setup corresponded to
the QDA assumption, and resulted in quadratic decision boundaries. The
left-hand panel of Figure 4.12 shows that QDA outperformed all of the
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FIGURE 4.12. Boxplots of the test error rates for each of the non-linear
scenarios described in the main text.

other approaches. The naive Bayes assumption of independent predictors
is violated, so naive Bayes performs poorly.
Scenario 5: The data were generated from a normal distribution with un-
correlated predictors. Then the responses were sampled from the logistic
function applied to a complicated non-linear function of the predictors. The
center panel of Figure 4.12 shows that both QDA and naive Bayes gave
slightly better results than the linear methods, while the much more flexi-
ble KNN-CV method gave the best results. But KNN with K = 1 gave the
worst results out of all methods. This highlights the fact that even when the
data exhibits a complex non-linear relationship, a non-parametric method
such as KNN can still give poor results if the level of smoothness is not
chosen correctly.
Scenario 6: The observations were generated from a normal distribution
with a different diagonal covariance matrix for each class. However, the
sample size was very small: just n = 6 in each class. Naive Bayes performed
very well, because its assumptions are met. LDA and logistic regression
performed poorly because the true decision boundary is non-linear, due to
the unequal covariance matrices. QDA performed a bit worse than naive
Bayes, because given the very small sample size, the former incurred too
much variance in estimating the correlation between the predictors within
each class. KNN’s performance also suffered due to the very small sample
size.

These six examples illustrate that no one method will dominate the oth-
ers in every situation. When the true decision boundaries are linear, then
the LDA and logistic regression approaches will tend to perform well. When
the boundaries are moderately non-linear, QDA or naive Bayes may give
better results. Finally, for much more complicated decision boundaries, a
non-parametric approach such as KNN can be superior. But the level of
smoothness for a non-parametric approach must be chosen carefully. In the
next chapter we examine a number of approaches for choosing the correct
level of smoothness and, in general, for selecting the best overall method.

Finally, recall from Chapter 3 that in the regression setting we can accom-
modate a non-linear relationship between the predictors and the response
by performing regression using transformations of the predictors. A similar
approach could be taken in the classification setting. For instance, we could
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Coefficient Std. error t-statistic p-value
Intercept 73.60 5.13 14.34 0.00
workingday 1.27 1.78 0.71 0.48
temp 157.21 10.26 15.32 0.00
weathersit[cloudy/misty] -12.89 1.96 -6.56 0.00
weathersit[light rain/snow] -66.49 2.97 -22.43 0.00
weathersit[heavy rain/snow] -109.75 76.67 -1.43 0.15

TABLE 4.10. Results for a least squares linear model fit to predict bikers in
the Bikeshare data. The predictors mnth and hr are omitted from this table due
to space constraints, and can be seen in Figure 4.13. For the qualitative variable
weathersit, the baseline level corresponds to clear skies.

create a more flexible version of logistic regression by including X2, X3,
and even X4 as predictors. This may or may not improve logistic regres-
sion’s performance, depending on whether the increase in variance due to
the added flexibility is offset by a sufficiently large reduction in bias. We
could do the same for LDA. If we added all possible quadratic terms and
cross-products to LDA, the form of the model would be the same as the
QDA model, although the parameter estimates would be different. This
device allows us to move somewhere between an LDA and a QDA model.

4.6 Generalized Linear Models
In Chapter 3, we assumed that the response Y is quantitative, and ex-
plored the use of least squares linear regression to predict Y . Thus far in
this chapter, we have instead assumed that Y is qualitative. However, we
may sometimes be faced with situations in which Y is neither qualitative
nor quantitative, and so neither linear regression from Chapter 3 nor the
classification approaches covered in this chapter is applicable.

As a concrete example, we consider the Bikeshare data set. The response
is bikers, the number of hourly users of a bike sharing program in Wash-
ington, DC. This response value is neither qualitative nor quantitative:
instead, it takes on non-negative integer values, or counts. We will consider countspredicting bikers using the covariates mnth (month of the year), hr (hour
of the day, from 0 to 23), workingday (an indicator variable that equals 1 if
it is neither a weekend nor a holiday), temp (the normalized temperature,
in Celsius), and weathersit (a qualitative variable that takes on one of four
possible values: clear; misty or cloudy; light rain or light snow; or heavy
rain or heavy snow.)

In the analyses that follow, we will treat mnth, hr, and weathersit as
qualitative variables.

4.6.1 Linear Regression on the Bikeshare Data
To begin, we consider predicting bikers using linear regression. The results
are shown in Table 4.10.

We see, for example, that a progression of weather from clear to cloudy
results in, on average, 12.89 fewer bikers per hour; however, if the weather
progresses further to rain or snow, then this further results in 53.60 fewer
bikers per hour. Figure 4.13 displays the coefficients associated with mnth
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FIGURE 4.13. A least squares linear regression model was fit to predict bikers
in the Bikeshare data set. Left: The coefficients associated with the month of the
year. Bike usage is highest in the spring and fall, and lowest in the winter. Right:
The coefficients associated with the hour of the day. Bike usage is highest during
peak commute times, and lowest overnight.

and the coefficients associated with hr. We see that bike usage is highest in
the spring and fall, and lowest during the winter months. Furthermore, bike
usage is greatest around rush hour (9 AM and 6 PM), and lowest overnight.
Thus, at first glance, fitting a linear regression model to the Bikeshare data
set seems to provide reasonable and intuitive results.

But upon more careful inspection, some issues become apparent. For
example, 9.6% of the fitted values in the Bikeshare data set are negative:
that is, the linear regression model predicts a negative number of users
during 9.6% of the hours in the data set. This calls into question our ability
to perform meaningful predictions on the data, and it also raises concerns
about the accuracy of the coefficient estimates, confidence intervals, and
other outputs of the regression model.

Furthermore, it is reasonable to suspect that when the expected value
of bikers is small, the variance of bikers should be small as well. For
instance, at 2 AM during a heavy December snow storm, we expect that
extremely few people will use a bike, and moreover that there should be
little variance associated with the number of users during those conditions.
This is borne out in the data: between 1 AM and 4 AM, in December,
January, and February, when it is raining, there are 5.05 users, on average,
with a standard deviation of 3.73. By contrast, between 7 AM and 10 AM,
in April, May, and June, when skies are clear, there are 243.59 users, on
average, with a standard deviation of 131.7. The mean-variance relationship
is displayed in the left-hand panel of Figure 4.14. This is a major violation
of the assumptions of a linear model, which state that Y =

∑p
j=1 Xjβj + ε,

where ε is a mean-zero error term with variance σ2 that is constant, and
not a function of the covariates. Therefore, the heteroscedasticity of the
data calls into question the suitability of a linear regression model.

Finally, the response bikers is integer-valued. But under a linear model,
Y = β0 +

∑p
j=1 Xjβj + ε, where ε is a continuous-valued error term. This

means that in a linear model, the response Y is necessarily continuous-
valued (quantitative). Thus, the integer nature of the response bikers sug-
gests that a linear regression model is not entirely satisfactory for this data
set.
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FIGURE 4.14. Left: On the Bikeshare dataset, the number of bikers is dis-
played on the y-axis, and the hour of the day is displayed on the x-axis. Jitter
was applied for ease of visualization. For the most part, as the mean number of
bikers increases, so does the variance in the number of bikers. A smoothing spline
fit is shown in green. Right: The log of the number of bikers is now displayed on
the y-axis.

Some of the problems that arise when fitting a linear regression model
to the Bikeshare data can be overcome by transforming the response; for
instance, we can fit the model

log(Y ) =
p∑

j=1

Xjβj + ε.

Transforming the response avoids the possibility of negative predictions,
and it overcomes much of the heteroscedasticity in the untransformed data,
as is shown in the right-hand panel of Figure 4.14. However, it is not quite
a satisfactory solution, since predictions and inference are made in terms of
the log of the response, rather than the response. This leads to challenges
in interpretation, e.g. “a one-unit increase in Xj is associated with an
increase in the mean of the log of Y by an amount βj”. Furthermore, a
log transformation of the response cannot be applied in settings where the
response can take on a value of 0. Thus, while fitting a linear model to
a transformation of the response may be an adequate approach for some
count-valued data sets, it often leaves something to be desired. We will see
in the next section that a Poisson regression model provides a much more
natural and elegant approach for this task.

4.6.2 Poisson Regression on the Bikeshare Data
To overcome the inadequacies of linear regression for analyzing the Bikeshare
data set, we will make use of an alternative approach, called Poisson
regression. Before we can talk about Poisson regression, we must first in- Poisson

regressiontroduce the Poisson distribution.
Poisson
distribution

Suppose that a random variable Y takes on nonnegative integer values,
i.e. Y ∈ {0, 1, 2, . . .}. If Y follows the Poisson distribution, then

Pr(Y = k) =
e−λλk

k!
for k = 0, 1, 2, . . . . (4.35)
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Here, λ > 0 is the expected value of Y , i.e. E(Y ). It turns out that λ also
equals the variance of Y , i.e. λ = E(Y ) = Var(Y ). This means that if Y
follows the Poisson distribution, then the larger the mean of Y , the larger
its variance. (In (4.35), the notation k!, pronounced “k factorial”, is defined
as k! = k × (k − 1)× (k − 2)× . . .× 3× 2× 1.)

The Poisson distribution is typically used to model counts; this is a nat-
ural choice for a number of reasons, including the fact that counts, like
the Poisson distribution, take on nonnegative integer values. To see how
we might use the Poisson distribution in practice, let Y denote the num-
ber of users of the bike sharing program during a particular hour of the
day, under a particular set of weather conditions, and during a particu-
lar month of the year. We might model Y as a Poisson distribution with
mean E(Y ) = λ = 5. This means that the probability of no users dur-
ing this particular hour is Pr(Y = 0) = e−550

0! = e−5 = 0.0067 (where
0! = 1 by convention). The probability that there is exactly one user
is Pr(Y = 1) = e−551

1! = 5e−5 = 0.034, the probability of two users is
Pr(Y = 2) = e−552

2! = 0.084, and so on.
Of course, in reality, we expect the mean number of users of the bike

sharing program, λ = E(Y ), to vary as a function of the hour of the day,
the month of the year, the weather conditions, and so forth. So rather
than modeling the number of bikers, Y , as a Poisson distribution with a
fixed mean value like λ = 5, we would like to allow the mean to vary as a
function of the covariates. In particular, we consider the following model
for the mean λ = E(Y ), which we now write as λ(X1, . . . , Xp) to emphasize
that it is a function of the covariates X1, . . . , Xp:

log(λ(X1, . . . , Xp)) = β0 + β1X1 + · · ·+ βpXp (4.36)
or equivalently

λ(X1, . . . , Xp) = eβ0+β1X1+···+βpXp . (4.37)
Here, β0,β1, . . . ,βp are parameters to be estimated. Together, (4.35) and
(4.36) define the Poisson regression model. Notice that in (4.36), we take
the log of λ(X1, . . . , Xp) to be linear in X1, . . . , Xp, rather than having
λ(X1, . . . , Xp) itself be linear in X1, . . . , Xp; this ensures that λ(X1, . . . , Xp)
takes on nonnegative values for all values of the covariates.

To estimate the coefficients β0,β1, . . . ,βp, we use the same maximum
likelihood approach that we adopted for logistic regression in Section 4.3.2.
Specifically, given n independent observations from the Poisson regression
model, the likelihood takes the form

"(β0,β1, . . . ,βp) =
n∏

i=1

e−λ(xi)λ(xi)yi

yi!
, (4.38)

where λ(xi) = eβ0+β1xi1+···+βpxip , due to (4.37). We estimate the coef-
ficients that maximize the likelihood "(β0,β1, . . . ,βp), i.e. that make the
observed data as likely as possible.

We now fit a Poisson regression model to the Bikeshare data set. The
results are shown in Table 4.11 and Figure 4.15. Qualitatively, the results
are similar to those from linear regression in Section 4.6.1. We again see
that bike usage is highest in the spring and fall and during rush hour,
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Coefficient Std. error z-statistic p-value
Intercept 4.12 0.01 683.96 0.00
workingday 0.01 0.00 7.5 0.00
temp 0.79 0.01 68.43 0.00
weathersit[cloudy/misty] -0.08 0.00 -34.53 0.00
weathersit[light rain/snow] -0.58 0.00 -141.91 0.00
weathersit[heavy rain/snow] -0.93 0.17 -5.55 0.00

TABLE 4.11. Results for a Poisson regression model fit to predict bikers in
the Bikeshare data. The predictors mnth and hr are omitted from this table due
to space constraints, and can be seen in Figure 4.15. For the qualitative variable
weathersit, the baseline corresponds to clear skies.

FIGURE 4.15. A Poisson regression model was fit to predict bikers in the
Bikeshare data set. Left: The coefficients associated with the month of the year.
Bike usage is highest in the spring and fall, and lowest in the winter. Right: The
coefficients associated with the hour of the day. Bike usage is highest during peak
commute times, and lowest overnight.

and lowest during the winter and in the early morning hours. Moreover,
bike usage increases as the temperature increases, and decreases as the
weather worsens. Interestingly, the coefficient associated with workingday
is statistically significant under the Poisson regression model, but not under
the linear regression model.

Some important distinctions between the Poisson regression model and
the linear regression model are as follows:

• Interpretation: To interpret the coefficients in the Poisson regression
model, we must pay close attention to (4.37), which states that an
increase in Xj by one unit is associated with a change in E(Y ) = λ
by a factor of exp(βj). For example, a change in weather from clear
to cloudy skies is associated with a change in mean bike usage by a
factor of exp(−0.08) = 0.923, i.e. on average, only 92.3% as many
people will use bikes when it is cloudy relative to when it is clear.
If the weather worsens further and it begins to rain, then the mean
bike usage will further change by a factor of exp(−0.5) = 0.607, i.e.
on average only 60.7% as many people will use bikes when it is rainy
relative to when it is cloudy.
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• Mean-variance relationship: As mentioned earlier, under the Poisson
model, λ = E(Y ) = Var(Y ). Thus, by modeling bike usage with a
Poisson regression, we implicitly assume that mean bike usage in a
given hour equals the variance of bike usage during that hour. By
contrast, under a linear regression model, the variance of bike usage
always takes on a constant value. Recall from Figure 4.14 that in the
Bikeshare data, when biking conditions are favorable, both the mean
and the variance in bike usage are much higher than when conditions
are unfavorable. Thus, the Poisson regression model is able to handle
the mean-variance relationship seen in the Bikeshare data in a way
that the linear regression model is not.5 overdispersion

• nonnegative fitted values: There are no negative predictions using the
Poisson regression model. This is because the Poisson model itself
only allows for nonnegative values; see (4.35). By contrast, when we
fit a linear regression model to the Bikeshare data set, almost 10% of
the predictions were negative.

4.6.3 Generalized Linear Models in Greater Generality
We have now discussed three types of regression models: linear, logistic and
Poisson. These approaches share some common characteristics:

1. Each approach uses predictors X1, . . . , Xp to predict a response Y .
We assume that, conditional on X1, . . . , Xp, Y belongs to a certain
family of distributions. For linear regression, we typically assume that
Y follows a Gaussian or normal distribution. For logistic regression,
we assume that Y follows a Bernoulli distribution. Finally, for Poisson
regression, we assume that Y follows a Poisson distribution.

2. Each approach models the mean of Y as a function of the predictors.
In linear regression, the mean of Y takes the form

E(Y |X1, . . . , Xp) = β0 + β1X1 + · · ·+ βpXp, (4.39)

i.e. it is a linear function of the predictors. For logistic regression, the
mean instead takes the form

E(Y |X1, . . . , Xp) = Pr(Y = 1|X1, . . . , Xp)

=
eβ0+β1X1+···+βpXp

1 + eβ0+β1X1+···+βpXp
, (4.40)

while for Poisson regression it takes the form

E(Y |X1, . . . , Xp) = λ(X1, . . . , Xp) = eβ0+β1X1+···+βpXp . (4.41)

Equations (4.39)–(4.41) can be expressed using a link function, η, which link function

5In fact, the variance in the Bikeshare data appears to be much higher than the
mean, a situation referred to as overdispersion. This causes the Z-values to be inflated
in Table 4.11. A more careful analysis should account for this overdispersion to obtain
more accurate Z-values, and there are a variety of methods for doing this. But they are
beyond the scope of this book.
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applies a transformation to E(Y |X1, . . . , Xp) so that the transformed mean
is a linear function of the predictors. That is,

η(E(Y |X1, . . . , Xp)) = β0 + β1X1 + · · ·+ βpXp. (4.42)
The link functions for linear, logistic and Poisson regression are η(µ) = µ,
η(µ) = log(µ/(1− µ)), and η(µ) = log(µ), respectively.

The Gaussian, Bernoulli and Poisson distributions are all members of a
wider class of distributions, known as the exponential family. Other well- exponential

familyknown members of this family are the exponential distribution, the Gamma
exponential
Gamma

distribution, and the negative binomial distribution. In general, we can per-

negative
binomial

form a regression by modeling the response Y as coming from a particular
member of the exponential family, and then transforming the mean of the
response so that the transformed mean is a linear function of the predictors
via (4.42). Any regression approach that follows this very general recipe is
known as a generalized linear model (GLM). Thus, linear regression, logistic generalized

linear modelregression, and Poisson regression are three examples of GLMs. Other ex-
amples not covered here include Gamma regression and negative binomial
regression.

4.7 Lab: Logistic Regression, LDA, QDA, and
KNN

4.7.1 The Stock Market Data
In this lab we will examine the Smarket data, which is part of the ISLP
library. This data set consists of percentage returns for the S&P 500 stock
index over 1,250 days, from the beginning of 2001 until the end of 2005.
For each date, we have recorded the percentage returns for each of the five
previous trading days, Lag1 through Lag5. We have also recorded Volume
(the number of shares traded on the previous day, in billions), Today (the
percentage return on the date in question) and Direction (whether the
market was Up or Down on this date).

We start by importing our libraries at this top level; these are all imports
we have seen in previous labs.

In [1]: import numpy as np
import pandas as pd
from matplotlib.pyplot import subplots
import statsmodels.api as sm
from ISLP import load_data
from ISLP.models import (ModelSpec as MS,

summarize)

We also collect together the new imports needed for this lab.
In [2]: from ISLP import confusion_table

from ISLP.models import contrast
from sklearn.discriminant_analysis import \

(LinearDiscriminantAnalysis as LDA,
QuadraticDiscriminantAnalysis as QDA)

from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
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